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Abstract: In physics, synergy is an action that involves the coordination of two

Keywords or more causes or parts, whose effects will be greater than the sum of the individual

effects. Measuring the synergistic strength of the treatment and the immune response
Optimization, working together is of vital importance to control physicochemical parameters in
Dynamical systems, bacterial infections. In. this sense, in this article we focus on analyzing the impact of
Aol synergy through an optimal control problem. To formulate and solve the problem we use

conservation laws that characterize the main properties of the physical phenomenon.
Specifically, we use the Pontryagin Minimum Principle to minimize a performance
Immune response, functional that measures the strength of the synergy between treatment and immune
Synergy. response. The numerical results suggest that the forces synergies must be proportional
to each other to control bacterial spread.

resistance, Plasmids,
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Resumen: En fisica, la sinergia es una acciéon que implica la coordinacién de
dos o mas causas o partes, cuyos efectos seran mayores que la suma de los efectos
individuales. Medir la fuerza sinérgica del tratamiento y la respuesta inmune trabajando
conjuntamente es de vital importancia para controlar los parametros fisicoquimicos
en las infecciones bacterianas. En este sentido, en este articulo nos centramos en
analizar el impacto de la sinergia a través de un problema de control dptimo. Para
formular y resolver el problema utilizamos leyes de conservacién que caracterizan
las principales propiedades del fendmeno fisico. En concreto, utilizamos el Principio
Minimo de Pontryagin para minimizar un funcional de rendimiento que mide la fuerza
de la sinergia entre el tratamiento y la respuesta inmune. Los resultados numéricos
sugieren que las sinergias de las fuerzas deben ser proporcionales entre si para controlar

la propagacion bacteriana.

Introduction

Antimicrobial resistance (AMR) of
microorganisms such as bacteria is among the latent
threats to public health worldwide. Due to the fact
that humanity had to focus its efforts on overcoming
the Covid-19 pandemic, the surveillance of critical
factors in public health, such as antimicrobial
resistance, was neglected. Transmission of resistant
bacteria to multiple antibiotics increased. Mainly,
the acquisition of resistance due to the transfer of
resistance genes carried by resistance plasmids
is generating a global emergency (Ibargiien-
Mondragoén et al., 2022).

Through  dynamical systems, different
characteristics of AMR have been addressed. The
approaches that assess the impact of these drugs
(Udekwu & Weiss, 2018), or optimize their use
(Lowden et al., 2014) (Massad et al., 2008), or
those that focus on the importance of the immune
response (Handel et al., 2009), or the fight of the
immune system against antimicrobial resistance
(Ibargiien-Mondragén & Esteva, 2013), or develop
antimicrobial protocols (Udekwu & Weiss, 2018)
(Leung (Joey) & Weitz, 2017).

The synergy between the immune system and
drugs is a fundamental factor in controlling the spread
of antimicrobial resistance within the host (Leung
(Joey) & Weitz, 2017). Similarly to (Landersdorfer
et al,, 2013) (Ankomah & Levin, 2014), several

synergistic properties and immune response were
analized for combination of antibiotics.

Dynamics of bacterial competition within
the host

The mathematical model that describe de
competition dynamics of bacteria is giveng by:

as S+R
L= pes (1-25) - g5 - 6Ps — s

dR= S+R
&= Bs (1- Z8)+ g5+ 8PS — R

= = 6,R — P, (1)

where S(7) and R(¢) are the number of drug-
sensitive and pre-existing resistant bacteria in the
host at time t, respectively and P(¢) is the number
of plasmids in the host at time ¢. K is the carrying
capacity. S and f are the reproduction rates of
bacteria, sensitive and resistant, respectively,
where q is the mutation rate of sensitive bacteria
due to exposure to antibiotics, u and u are per
capita natural death rates of bacteria, sensitive
and resistant respectively, o is the transfer rate of
resistant plasmids among bacteria., o, is the plasmid
replication rate, and they degrade at a constant rate

1

The invariant set for the solutions of system (1)
is
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a={6SRPEMRD:O<S S +R < KO0 <P <ak/p) (2
In fact, we have the following result

Proposition 1. The set Q defined in Equation
(2) is positively invariant for the solutions of
Equation (1).

For the proof of Proposition 1 see Lema 2.1 in
(Ibargiien-Mondragén et al., 2019). The existence
of equilibria is condensed in Proposition 2.

Proposition 2. Let

R, =&andRs= B

y q + s

(3)

Equation (1) always has a trivial point E =
(0,0,0). If R.> 1, there exists an endemic point

( (Rr—=1)K 0p (RT-—l)K)
El = 0, y
Br M Br JIfR>1andR <R,
there exists an endemic point E,=(S,R,P,) where
1
P
T da,K
1
Bsttp

For the proof of the Proposition 2 see
Proposition 3.1 in (Ibargliien-Mondragén et al.,
2021). The stability results of equilibrium solutions
are condensed in Proposition 3.

Proposition 3. If R<I] and R<I then E is
globally asymptotically stable in the set Q defined in
Equation (2). If R >1 and R <I, then E is globally
asymptotically stable in Q defined in Equation (2).
Ifap o small enough, the equilibrium E, is locally
asymptotically stable in Q. In addition, when E,
loses its stability, the existence of a hopf bifurcation
is verified.

Proof. The global stability of E, and E, are
followed from the Liapunov's direct method using
the functions V' = S/ +R/B and V=S, respectively.

The Local stability of £, is followed from the The
Routh-Hurwitz criterium (see (Ibargiien-Mondragén
et al., 2019)) to the proof of the Hopf bifurcacion
see (Ibargiien-Mondragon et al., 2021).

Qualitative analysis reveals the following
scenarios can be deduced (Ortega Bejarano et al.,
2018):

(1): An infection can always be cleared (the
global stability of £, when R <1 and R <1).

(i1): An infection can progress only with
resistant bacteria (the global stability of £, when
R<I1 and R<I).

(i11): An infection can progress with the
coexistence of both types of bacteria (the local
stability of £, when 5ap <<1,R>land R<R’,or
the appearance of limit cycles when E 2 loses its
stability).

Optimal control problem

The mathematical modeling that we will carry
out reduces the bacterial population in a fixed period.
In this sense, the strategies to control bacterial
progression are the immune response and antibiotic
treatment. u, (t) and u, (¢) are the elimination rate
of sensitive bacteria due to action of antibiotic
treatment and elimination rate of sensitive and
resistant bacteria due to specific immune response,
respectively. Equation (1) is rewritten as

ds S+R
i ﬁsS(l—T) - (¢ + w(®)S - 8PS — uy()S — psS

dR S+R
== ﬁ,.R(l—T) + ¢S+ 6PS — u,(R — i, R

ar
T R — p,P 4)

with §(0) = S, = 0, R(0) = R, = 0 and P(0) = P, > 0. The cost function is

1T
1(x,uy,up) = 3 f [c1(S% 4+ R?) + ¢,S% + csu? + c,ud] dt )
(1]

where x = (S,R,P)", c,c,c, and c, are relative
weights associated with the e ciency of the bacterial
elimination by the immune system, effectiveness
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of the elimination of sensitive bacteria by the treatment, u, and u,, respectively. Functional I defined in
Equation (5) measures the cost associated to antibiotic treatment and stimulation of the immune response.
Minimization process of I is subjected to state Equation (4) and the boundary conditions

x(0) =x, andx (T) = X, (6)

where the initial state x_ is an endemic equilibrium or a limit cycle of Equation (1) and the final state x .

is variable.
Deduction of an optimal solution

With the purpose of optimizing bacterial elimination rates, we consider the following Hamiltonian

function

1
H(t,x,u,z) = 3 [c (5% + R%) + ¢3S + c3u? + c,u?] (€)]
S+R
tz; [ﬁgS (1 - T) —(q +uy)S —0PS—uS— usS]
S+R
tZ; [ﬁrR (1 - T) +gS + 8PS — uyR — [JTR]
+23 (0,R — upP),

where z, for i =1,...,3 are the adjoint variables that determine the adjoint system. From Hamiltonian
defined in Equation (8) we deduced the following adjoint system

dz 25 + R
d_tlz —(c1+¢)S + [—BS (1 % ) +(q+u +6P+u, +,us))]zl 8)

+ [ﬁr?R_ (g+ SP)] 7y

dz, BsS S+2R
E:—CIR+721—Jp23+[u2+ur—,8,.(1— X )]22
de
— =05(z; —z,) + W,z
dt (7 - 2,) BpZ3,
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Figure 1. Numerical simulations of the control
problem defined in Equations (4-6). The synergistic
collaboration between the controls u 1 and u 2
allows the elimination of both bacterial populations
(These simulations were carried out in MATLAB
2022B (Lic Universidad de Narifio)).

with transversality condition z, () = 0 for i =
1,...,3. The optimal conditions for the Hamiltonian
are given by 0H/0u,” = 0H/0u,” = 0, or equivalently

o0H

a_m=63u1_215=0

oH

a_l{? = 631.',2 - Z]_S _ZzR = 0.

From the above equations, we obtain

Z;S
u1 =
C3
Z;R
uz = Z]_S + e
Cy

Numerical results

We use the forward-backward sweep method to
perform numerical simulations of the optimal control
problem defined in Equations (4-6), (Ankomah &

Conrol u,
b
A

4
[
-]
=i

Controlu,

Time (howr)

Levin, 2014). To analyze the relation between the
control variables u, and u, during the reduction of
the bacterial population, we simultaneously activate
both controls. The numerical simulations of the
Figure 1 were performed with the following values
p=2.4,=0.2,4=0.0063785,1=0.2,11=0.18,0 =0.25
,5210'6,/1p=0.15 and K=20000. Figure 2 were made
with the same values, except for 6=107 . The values
of the relative weights used for the Figure u, are
c,=10%,¢,=2*107,¢,=0.02 and ¢,=0.01. For Figure
u, the values of the relative weights were ¢ =10
7,,2*%10%,c,0.02 and ¢ ~1.1.

As we can see, in the Figure 1 the progression
of both bacterial populations is controlled due to the
synergistic collaboration of both controls. While in
the Figure 2, the control u, is not activated, which
prevents the control of the progression of resistant
bacteria.
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Figure 2. Numerical simulations of the control
problem defined in Equations (4-6). In this case,
there was no synergistic  collaboration between
the controls #, and u, due to u, was not activated.
(These simulations were carried out in MATLAB
2022B (Lic Universidad de Narifio)).

Conclusion

It is a fact that the synergy between the immune
system and the therapeutic action of drugs is of
great relevance in the epidemiological surveillance
of antimicrobial resistance. For this reason, both the
models between and within the host are part of the
necessary tools to face this challenge. In this work,
we contribute with the analysis of an optimal control
problem that arises from the model within the host.
The results suggest that at this level, it is necessary
to enhance the synergy of both factors in favor of
the host.
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