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ABSTRACT

Key words: From the implementation of analytical solutions for thin rectangular slabs using the Finite Difference Method, the present paper
was developed with the purpose of comparing the determined stresses in a concrete plate with those that would be obtained using
the tables originated from the plate theory found in the literature. For this, the Python programming lan-guage was used, taking as
a case study, a slab with dimensions of 5 m long by 3 m wide and thickness equal to 0.10 m. In the analysis of the stresses, several
support conditions were considered, in which the internal stresses and displacements obtained by the Finite Difference Method were
compared with the results obtained through the tables proposed in the litera-ture. It was verified that the Finite Difference Method
constitutes a good alternative for the resolution of thin solid plates, since the results were similar to the classic solution proposed in
the literature. The implemented program allows the visual-ization of the stresses through of spectrums of zone which facilitates the
understanding of the distribution of the stresses along the slab, differing slightly from the uniform distribution adopted in the tables
consulted.

RESUMEN

Concrete, Elastic method,
Finite differences method,
Two-way Slabs.

Palabras claves: A partir de la implementacion de soluciones analiticas para losas rectangulares delgadas utilizando el Método de Diferencias Finitas,
el presente articulo tiene como objetivo comparar los esfuerzos determinados sobre una placa de hormigon con los que se encontrarian
utilizando tablas originadas a partir de la teoria de las placas de los autores consagrado en la literatura. Para ello, se utilizo el lenguaje
de programacion Python, tomando como caso de estudio, una losa con dimensiones de 5 m de largo por 3 m de ancho y grosor igual
a0.10 m. En el analisis de esfuerzos se consideraron varias condiciones de apoyo y se compararon los esfuerzos y desplazamientos
internos encontrados por el Método de Diferencias Finitas con los resultados obtenidos a través de las Tablas propuestas en la
literatura. Se encontrd que el Método de Diferencias Finitas es una buena alternativa para la resolucion de losas delgadas, ya que los
resultados fueron similares a la solucion cléasica propuesta en la literatura. El programa implementado permite visualizar los esfuerzos
através de los espectros de rango que facilito la comprension de su distribucion a lo largo de la losa, diferenciandose de la distribucion
uniforme adoptada en las tablas consultadas.

Hormigoén, Método
elastico, Método de
diferencias finitas, Losas
bidireccionales.

1. Introduction elements, equivalent grid and use of series to represent the

With regard to the design of two-way slabs, there are
basically two calculation methods: the elastic method and
the rupture method. The first is based on the analysis of the
behavior of the element under service loads and intact (non-
cracked) concrete. The second is based on the mechanisms
of breaking the slabs.

There are several processes for determining the stresses,
among which we can highlight: finite difference, finite

load value in each coordinate of the plane (p (x, )).

Thus, the objective of this work is to present a
comparative study between the stresses deter-mined by
the finite difference method and the tables proposed by
[1]. For this, an implementation of an algorithm in Python
programming language, analyzing a slab with different
boundary conditions, was made.
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2. Calculation methods

2.1 Elastic method
The elastic method (classic) can also be called the
Kirchhoff-Love theory of plates. This method is based on
the equilibrium equations of an infinitesimal plate element
and on the compatibility relationships of the deformations of
that element [2-3].

According to item 14.7.3 of Brazilian code for design
of concrete structures, NBR 6118 [4], methods based on
the theory of elasticity can be used in plate structures, with
Poisson’s ratio v equal to 0.2, as long as the conditions
dealing with linear analysis, stiffness values, redistributing
moments, and ductility are met.

In order to use this method, it is necessary to admit
some hypotheses, that is: homogeneous, elastic, isotropic
material, physically linear and small displacements. It is also
admitted that the section remains flat after deformation and
the elements representation can be done through its average
plane.

In order to facilitate the use of boundary conditions in
solving the stress determination prob-lem, most of the time,
other considerations are made, such as: the action of the plates
on the contour beams occurs only by means of vertical forces,
with no transmission of torsion or moments to the beams;
the actions of the plates on the contour beams are uniformly
distributed, and there is no load transmission directly to
the columns; the contour beams cannot be displaced in the
vertical direction; and the rotation of the plates in the contour
is free (simple support) or totally prevented (embedded).

2.2 Fundamental equation (thin plates)

The fundamental differential equation of the thin plates
(obtained by equilibrium and compatibility of displacements
of an infinitesimal element, relating bending moments with
curvature), subjected to a load p(x, y), is presented below:

d*w

N d'w p
dx*

d*w )4
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where:
W — Vertical displacement;
X Y — Coordinates of a generic point on the plate;

P — Intensity of the active load;
Eh?

T 12(-0?)
h — Plate thickness;
v — Poisson’s ratio;
E — Longitudinal elastic modulus of concrete.

— Rigidity to plate flexion;

Solving the fundamental equation (1), we obtain the
expression for the elastic surface w=(x,y), and with its
derivatives, the moments m, and m, in directions x and y,
are pre-sented in respectively equations:
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The fundamental equation was obtained for moments
acting per unit of length, that is, if acting a total moment
Mx (adopts as Mx the moment that must be resisted in the
direction x) on the plate, of width /y, the moment /y in a unit
width (Figure 1) is shown below:

. (4)

Figure 1. Moment mx per unit length acting on the plate. Source
[2].
2.3 Finite Difference Method
The Finite Difference Method is a method of solving
differential equations that is based on the approximation
of derivatives by finite differences [5-6]. In this item, the
approach of this method performed by [7] is presented.

So, let Ax>0 and consider the following Taylor series of
a function around a point x,, respectively to the right and left:

u(x, +Ax) =

2 5
u(x0)+%(x0)m+%zx—?(xo)mz+... ©)
u(x, —Ax) =

2 6
u(xo)—%(xo)Ax+2l!Zx—Z(xo)Ax2—... ©)
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Denoting Ax" = (Ax)" and isolating the first de-rivative,
we have:

du
a0 ™
u(x, +Ax)—u(x,) 1 d’u

Ax —EW XO)AX—...
B ()=
dx i ®
) ulay <) L

Ax 21 dx

Immediately two possible approximations are obtained
for the first derivative of u in x,,, as shown below:

du N u(x, +Ax) —u(x,)
n (%) A ©)
@ ~ u(x,) —u(x, — Ax)
o (%) Ar (10)

Equation (9) is called a progressive finite difference and
equation (10) is called Finite Difference Regression.

3. Calculation of thin slabs

According to [2-8], the calculation of slabs by finite
differences consists of the numerical integration of the
differential equation, which is re-placed by another of finite
differences. Here, the plate is divided into a mesh that adapts
to its outline, and the derivatives are replaced by approx-
imate expressions, determined through the use of convenient
interpolation polynomials.

The derivatives of the polynomial are consid-ered
approximately equal to those of the unknown function,
whose partial derivatives are intended to be replaced by
finite differences, such as:

dy~Ay:y2_y1 (11)

Also, according to [9] apud [2], these expres-sions are
applied to several points, allowing the solution of the problem
to be made, generally, through a system of linear equations.
In order to facilitate the understanding of the use of the Fi-
nite Difference Method in solving thin plate dif-ferential
equations, the approach performed by [10] is presented. As
shown in Figure 2, one can observe the nodal points that
form the finite dif-ference mesh. Thus, it is expected that the
greater the number of points, the better the approximation.

y A _Ax __Ax . Ax_

~Nodal points

i

Ay

Figure 2. Finite difference mesh. Source [10].

From equation (1), the finite difference equation can be
obtained:

13 4
T 12
i=1

D

Figure 3 shows the numbering of the nodes cor-
responding to the displacements (W;) of equation (12).
The a; coefficients are presented in the following set of equations:

2 —6+6(%)4+8(§X_J
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Figure 3. Local numbering for the determination of
displacement coefficients. Source [10].

Using the coefficients presented in the set of equations
(13) and in the sum presented in equation (12), and
referencing the elements in the global numbering, we
obtain the system of linear equations presented in equation
(11), with the number of unknowns equal to the number of
displacements to be determined:

[K]{w}={/}

(14)

where:

[K] — Matrix that accumulates the contributions of the a;
coefficients, positioned in the global reference;

{W} —nodal displacements to be determined;

q \.4
(1)=Lax
The system presented in equation (14) has as a solution
the displacements of all analysed nodal points. Once the
displacements are obtained, the requesting stresses can be
found, substituting in the differential equations that correlate
the stresses and the displacements (Figure 4). In this way, the
stresses are obtained in a plate element.

Ax

7 J'w.\’ - ]

’ M ¥ v ox

y 4 ' Yy O

Figure 4. Bending moments and shear forces on a plate element.
Source [10].

4. Calculation of thin slabs

A routine for the determination of efforts in plates was
computationally implemented. Version 2.7 of the Python
programming language was used, which can be considered a
high-level programming language, interpreted and oriented
to objects that presents a dynamic and strong functionality

[11].

Based on the input data (which consists of the plate
geometry, material property, loading and boundary
conditions), the programming starts to promote the
generation of the mesh to be used in the determination of
nodal displacements considering the points of intersection
between lines that were configured for 0.20 m spacing. It is
im-portant to highlight that the characteristics of the steel bars
were not modelled in the algorithm, considering that only a
simplified analysis was performed, that is, the influence of
the reinforcement was not verified through the equivalent
elasticity module.

For the application of the finite difference method, the
generated mesh was expanded in two points to the outer sides
of the slab support limits and the Lagrange equation was
applied to each mesh node. The boundary conditions varied
between simple supported, fixed or free edges, semi-fixed
edges were not considered in this example. The developed
algorithm identifies the boundary condition inserted as input
data and for the condition of the simple support type, a unit is
added to the pivot (central element coefficient, for example,
the coefficient in Figure 3), for the fixed support one unit is
subtracted from the pivot and when the informed side is free
board, the values of the Lagrange equation are modified at
the edge and at the internal border.

After this procedure, the weight matrix is assembled and
the program calculates the displacement at each point using
the finite difference method. The displacement calculation
is followed by the plotting of the values found in the form
of iso-bands. The bending moment and shear forces are
determined from the displacements and for each of these
steps, the diagrams representative of the isovalues found are
also plotted.

4.1 Input data

The input data consists of the boundary conditions,
characterized by the interaction between the plate and its
support (simple supported, fixed or free edges), the load
distributed by area, the spacing of the mesh to be discretized,
the geometric characteristics of the slab, such as its di-
mensions (length, width and thickness), and the properties of
the concrete (fck, modulus of elasticity, and Poisson’s ratio).
Table 1 summarizes the information characterized as input
data, the units considered, and the values used in the study of
each case developed.
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Table 1. Input data.

Data Unit Value

q N/m? 4.00E3
Ecs N/m? 30.67E9
Poisson's ratio - 0.20E0
fox N/m? 30.00E6
Width m 3.00E0
Length m 5.00E0
Thickness m 0.10E0
Mesh spacing m 0.20E0

4.2 Output data

The output data consisted of the nodal displace-ments,
bending moment and shear stresses, positive and negative,
for the directions x and y. The plotting for all points of the
slab was performed in a graphical form showing regions of
isovalues in scale. The maximum displacement value, posi-
tive and negative bending moments of greater intensity, as
well as the shear forces, were captured at the end of each
processing. Figures 5 and 6 show the results for a plate
simply supported on all edges.

5. Case study

To test the algorithm implemented in different situations, a
case study was set up to evaluate the displacement and effort
values determined by the finite difference method. Five slabs
of a residential room were modelled with accidental loads
equal to 1.5 kN/m?, obtained through table 3 of NBR:6120
[12].

0.0

0.0 0.5 1.0 1.5 2.0 25 3.0

Figure 5. Displacement fields for a fully simply sup-ported slab.

Figure 6. Fields for the fully simply supported slab: (a) bending
moment in “x”” (Nm/m); (b) bending moment in “y” (Nm/m); (c)
shear forces in “x” (N/m); (d) shear forces in “y” (N/m).

The total load considered was the live load plus the
permanent load due to the weight of a 0.10 m thick
reinforced concrete slab (specific weight equal to 25.0 kN/
m?). All slabs were 3 m wide according to the “x” axis and
5 m long according to the “y” axis. The slabs behave like
reinforced plates in two directions since the ratio between
the longest side and the shortest side was less than two (A =
1.67). Figure 7 shows the five cases of boundary conditions
studied, related to the interaction between the plate and its
support.

Figure 7(a) shows the four edges simply supported. In
Figure 7(b), only the left side of 5.0 m was fixed and the
others remained supported. In Figure 7(c), the two 5.0 m
sides are fixed, and the two 3.0 m sides are simply sup-
ported. The model shown in Figure 7(d), present all edges
fixed. Figure 7(e) corresponds to a slab with three sides fixed
and a 3.0 m edge (free) without support.
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Table 3. Results obtained for case “b”.

. Finite Bares’s o
Data Unit difference tables %
Finax mm 0.5745 0.54190 5.67
. Mtymax  Nm/m 2211.29 218520 1.18

Mymax  Nm/m -4118.93  4201.20  -2.00
Mfymax  Nm/m 912.87 673.20 26.25
Mymax  Nm/m -823.79 0.00 &

Vigmax  N/m 6681.16 5916 11.45

Vxmax N/m -4017.45  -2196 45.34

l Viymax  N/m 4052.51 3420 15.61

@ V-ymax N/m -4052.51  -3420 15.61

Figure 7. Cases studied: (a) four simply supported edges; (b) one
fixed edge and the others simply supported; (c) two parallel fixed Displacements and stresses are shown in table 4 for case
supports and two simple supports; (d) all fixed edges and (¢) three <«

fixed edges and one free edge. Table 4. Results obtained for case “c”.

5.1 Verification of results . Finite Bares’s |
The verification of the results presented by the implemented ~ Data Unit diference  tables %
algorithm, both for dlsplacements and for the str_esses, was Fi o 03172 030317 443
performed by comparing the values from the simulations
with the results determined using the coefficients obtained Mxmax  Nm/m 1466.71 1472.40  -0.39
in the design tables that use the theory of elasticity applied ~ Mxmax ~ Nm/m -2981.96  -2980.80 0.04
to plate elements (Bares’s tables). The shear forces obtained Mty e~ Nm/m 632.26 442.80 29.97
by Bares’s tables were ca}culated using the coefficient that Meymx  Nm/m -596.39 0.00
indicated the support reactions of the slabs in the beams. Dis-

placements and stresses are shown in table 2 for case “a”. Vime: N/m 5375.08 4956 7.80
V-x,max N/m -5375.08 -4956 7.80
Table 2. Results obtained for case “a”. Viymax  N/m 3305.47 1728 47.72
Data Unit .F inite Bares’s % V-y,max N/m -3305.47  -1728 47.72
difference _tables Table 5 shows the results for case “d”.
Fnax mm 1.0485 1.04155  0.66 . .
M xmax Nin/m 3103.63 3103.20 0.01 Table 5. Results obtained fo; c‘as.: d”. = :
Mymx  Nm/m  0.00 0.00  0.00 Data  Unit d_‘;‘f‘ © . Zrles A
Mfyms  Nm/m 145693 146520 -0.57 ‘2 er;nce a2 esl i
Mymsx Nm/m  0.00 0.00  0.00 Finax o 0253 0285100 3

M*ymax  Nm/m 1363.21 1368.00 -0.35
Mymx  Nm/m -2823.50  -2836.80 -0.47
Mfymx  Nm/m 566.60 529.20 6.60

V' max N/m 4888.34 4176 14.57
Voxmax N/m -4888.34 -4176 14.57
Vy,max N/m 3998.08 3000 24.96

Vey max N -3998.08 3000 24.96 Mymax  Nm/m -2002.39  -2059.20 -2.84
Vimax  N/m 5267.37 4176 20.72

Displacements and stresses are shown in table 3 for case . N/m 526737  -4176 20.72
o Viymax  N/m 4263.92 3000 29.64
Vymx  N/m -4263.92  -3000 29.64

€9

Table 6 shows the results for case “e”.
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Table 6. Results obtained for case “e”.

) Finite Bares’s .
Data Unit difference tables &
Fnax mm 0.3488 0.35387 -1.45
Mtymax  Nm/m 1623.89 1616.40 0.46
M-x,max Nm/m -3117.07 -3045.60 2.29
M*tymax  Nm/m 532.11 356.40 33.02
M-y max Nm/m -1994.39  -2005.20 -0.54
V*y,max N/m 5563.88 - -
V-xmax N/m -5563.88 - -
Vy,max N/m 2067.36 - -
V-y,max N/m -4245.13 - -

The data of the shear stresses could not be determined for
the “e” case (three fixed supports and a free edge) because
the Bares’s tables used do not provide the support reactions
for this situ-ation.

5.2 Analysis and discussions

In most cases, the percentage differences between stresses
determined by the finite difference method were small. It was
possible to perceive coherence as to the position of the highest
values considering the oriented axes. Comparing the arrows
determined by the two methods, it was found that there were
no percentage differences greater than 5.6%, as can be seen
in the tables. An arrow of 0.57 mm was obtained by the finite
difference method and 0.54 mm using the Bares’s tables
(case “b”). For the positive and negative bending moments
in the “x” and *“y”” directions, the percentage differences were
not greater than 6.6%, except for the positive moments in
cases “b”, “c” and “e” that presented percentage values of
up to 33.02%. It is also observed, that the finite difference
method presented values of negative bending moments on
the supported sides (direction “y””) of cases “b” (823.79
Nm/m) and “c” (-596, 39 Nm/m), while such stresses are not
considered in the Bares’s tables.

Figure 8(a) shows the graphs of positive and negative
bending moments isovalues for the *y”” direction of case “b”".
It is observed by the isovalue bands indicated in the graph
that in the region of the connection corner between the fixed
and the simple support a negative moment develops due to
the influence that the fixed support has on the beginning of
the simply supported section. Such behavior could also be
seen in the isovalue graph for case “c”, shown in Figure 8(b).

Region of negative bending moment on the supported side
indicating an influence of the fixed edge in the corner region

800 Nm/m

400 Nm/m

-400 Nm/m

-800 Nm/m

25 B30

10 15 20
(@

00 05

750 Nm/m
600 Nm/m
450 Nm/m
300 Nm/m
150 Nm/m
0

-150 Nm/m
-300 Nm/m
-450 Nm/m
-600 Nm/m

008 05 10 15 20 25

Region of negative bending moment on the supported side
indicating an influence of the fixed edge in the corner region

(®)

Figure 8. [sovalues of positive and negative bending moments
for direction “y” (a) for case “b” and (b) for case “c”. (Horizontal
axes in meters)

The shear efforts were the output data of the processing
that showed the biggest percentage differences. It should be
noted that the shear forces on the slab that had a free edge
were not evaluated. Despite the divergence of the values
deter-mined by the two methods, it was possible to perceive
symmetry when the opposite edges present the same
boundary conditions.

Figure 9 shows the results of shear stresses in the “y”
direction for the “c” case (two opposite sides fixed). Despite
corresponding to the greatest differences between the stresses
deter-mined according to the two methods (47.72%), it is
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possible to observe the expected symmetry between the
values from the existing support conditions.

As the Bares’s tables show an average value between
the different stresses along the beam length and the results
obtained by the finite difference method were the highest
values observed, the marked difference is attributed to the
simplifications that guided the making of the tables for
dimensioning of reinforced concrete slabs.

3200 N/m

1600 N/m

-1600 N/m

-3200 N/m

0.0\ 05 Lo LS 20 -25

Shear force variation along the length
of the support beam in both directions

Figure 9. Isovalues of shear forces in the “y” direction for the
case “c”. (Horizontal axes in meters)

6. Conclusions
Through this research, it was found that the finite difference
method is a good alternative for the resolution of thin plates,
as the results were similar to the classic solutions proposed
in the literature.

The simplification adopted in the tables (which use
the theory of elasticity applied to the plates) in which an
average value is considered over the entire length of the
support. In some cases, it can generate a detail of inadequate
reinforcement positioning, mainly when considering the
distribution of stresses in the corner regions (support region).
Using the finite difference method, it is possible to visualize
a more real distribution of these stresses, thus leading to a
better reinforcement arrangement and eventual savings in
the structural design.

Thus, it was found that depending on the boundary
conditions, some results have a better refinement through

the method of finite differ-ences compared to the process
of classical literature (Bares’s tables), which can be a
mathematical tool that can be used by software due to its ease
of implementation.
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