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Abstract 

Water, under normal conditions, tends to boil at a “normal boiling temperature” at which 

boiling point. Yet, the normal boiling temperature of different substances varies depending 

water under same conditions. In response to this phenomenon, an investigation on the 

its relationship with vapor pressure and thus with the boiling point of the substance, 
concluding that the internal pressure and boiling point of a volatile liquid in a closed 

Keywords: 

Resumen

El agua, en condiciones normales, tiende a hervir a una “temperatura de ebullición 

necesaria para alcanzar su punto de ebullición. Sin embargo, la temperatura de ebullición 
normal de las diferentes sustancias varía en función de su naturaleza, por lo que sustancias 
como los alcoholes, conocidos como volátiles, hierven más rápido que el agua en las 
mismas condiciones. En respuesta a este fenómeno, se realizó una investigación sobre la 

cerrado, estableciendo la presión de vapor como la tendencia determinante de una sustancia 

volátil en un sistema cerrado son negativamente proporcionales.
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RESUMO

A água, em condições normais, tende a ferver a uma «temperatura normal de ebulição» na 
qual a pressão atmosférica corrige a quantidade média de energia cinética necessária para 
atingir seu ponto de ebulição. No entanto, a temperatura normal de ebulição de diferentes 
substâncias varia dependendo da sua natureza, para as quais substâncias como álcoois, 
conhecidas como voláteis, ferver mais rapidamente do que a água nas mesmas condições. 

gasosas e líquidas de uma substância volátil em um sistema fechado, estabelecendo 

sua relação com a pressão de vapor e, portanto, com o ponto de ebulição da substância, 
concluindo que a pressão interna e o ponto de ebulição de um líquido volátil em um 
sistema fechado são negativamente proporcionais .

Palavras-chave: pressão, entalpia de vaporização, temperatura.

1. Introduction

The main aim of this investigation is to show 
the relationship between the vapor pressure 

of the substance when it has balanced the 
atmospheric pressure at a certain temperature 

pressure and temperature vapor pressure and 

this investigation will, in addition to the latter, 
alter the basic pressure conditions from which 

how pressure changes determine the amount 

in function to a set critical temperature and 

vacuum. Hence, the question to be investigated 
What is the relationship 

between the vapor pressure and boiling point 
of a volatile liquid in a closed system as 
temperature is increased and internal pressure 

 This investigation will address 

vapor pressure of a substance in a closed 

the rate of growth of vapor pressure in all cases 

readings with the difference in boiling point 
readings for the samples obtained.

2. Hypothesis and theoretical background

fundamental relation U = U (S, N, V…) from 

and S, N and V are the main natural variables 

for instance a pure substance in both its liquid 
and vapor phase, each phase can be regarded 
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through set macroscopic variables mentioned 

demonstrated below (equation 1),

(1)

where quantities of the ith phase are denoted 
i = 1, 2… P 

(2):

 (2)

for each phase and P (K + 2) variables for the 

particle species. This formula, however, is set 

of state for which the process of vaporization 

in equilibrium, one variable can be eliminated 

From such, a parameter or degree of freedom 
can be solved from the Gibbs phase rule 
which will determine the number of intensive 

following the formula F = (K + 2) – P where 
F is the number of intensive variables needed 

substance in both its vapor and liquid phase 

undergo an increase in temperature, causing 

surface molecules with a large amount of 

increased, vapor molecules will condense at 
the same rate liquid molecules are vaporizing 
until equilibrium is reached (saturated vapor 

equilibrium state where Tliquid = Tvapor; pliquid = 
pvapor liquid vapor

P = 2 and thus F= 1 + 2 – 2 = 1 such that the 

for vapor pressure when a given temperature 

equilibrium can be deduced regarding the 
Gibbs-Duhem relation, in which variables are 
not independent from each other. The follow 

(Equation 1) describes the Gibbs-Duhem 
relation (3):

(3)

liquid vapor 
(p, T). If temperature is variated (dT) and thus 
pressure variates at an equivalent rate (dp), 

liquid vapor (p, T) 

the Gibbs-Duhem relation (Equation 3) in the 

(4)
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of particles). After both equations (Equation 
4) are equalized following that chemical 

be re-written as (5):

 (5)

Where sli
substance in its liquid phase, sv

li
volume for the substance in its liquid phase 
and vv
in its vapor phase. This equation (5) is the 

in 1834), relating the rate of change of 

that 

Luisa Valencia.: Boiling point of volatile liquids at various pressures  
  

 (5) 
Where sli v 

is the specific volume for the substance in its liquid phase and vv is the specific volume for the substance in 
its vapor phase. This equation (5) is the Clausius-

5. These equations, still, must fulfill additional parameters to be true. As the latest re-
 

 

relevant to equilibrium positions.  r-
m-
 so 

on via the Legendre Transformation . n-

 or  when p’ is the derivate of f(x).  In this way, keeping a determinate variable in the pro-
cess of vaporization controlled, the atmospheric pressure, and hence changing the function U (S, V) (Equation 

without chemical potential) to a function H (S, p) the transformation reads as follows:  
 

(6) 
Where the potential H  in equation 6, d-
ing to the dif  

 
(7) 

needed to transform the substance into a gas . r-
mation of the Clausius- , as  given that when volume is con-

 in equation 7 rev n-

 

the Gibbs-Duhem relation (Equation 3), and is transformed as follows: 
 

(8) 
In fact, the latest equation (equation 8), when solved for a specific variable, gives one information about the 

, change of free 
-  

: 
 

(9) 
Where Tds and pdV equal to zero as to satisfy Euler’s equation. Further, when introducing   and 

needed to evaporate all the substance), then

     
Luisa Valencia.: Boiling point of volatile liquids at various pressures  

  
 

 (5) 
Where sli v 
vli is the specific volume for the substance in its liquid phase and vv is the specific volume for the substance in 
its vapor phase. This equation (5) is the Clausius-

then 5. These equations, still, must fulfill additional parameters to be true. As the latest re-
 

 

relevant to equilibrium positions.  r-
m-
 so 

on via the Legendre Transformation . n-

 or  when p’ is the derivate of f(x).  In this way, keeping a determinate variable in the pro-
cess of vaporization controlled, the atmospheric pressure, and hence changing the function U (S, V) (Equation 
1 without chemical potential) to a function H (S, p) the transformation reads as follows:  

 
(6) 

Where the potential H  in equation 6, d-
ing to the dif  

 
(7) 

needed to transform the substance into a gas . r-
mation of the Clausius- , as  given that when volume is con-
stant in equation 7 rev n-

 
. 

the Gibbs-Duhem relation (Equation 3), and is transformed as follows: 
 

(8) 
In fact, the latest equation (equation 8), when solved for a specific variable, gives one information about the 

, change of free 
-  

equa : 
 

. These equations, still, must 

be considered. In fact, following that the 

give information in function of the internal 

is stated in function of its correspondent 
intensive variable T, and so on via the Legendre 

4
 
 

 

relevant to equilibrium positions.  r-
m-
 so 

on via the Legendre Transformation . n-

 or  when p’ is the derivate of f(x).  In this way, keeping a determinate variable in the pro-
cess of vaporization controlled, the atmospheric pressure, and hence changing the function U (S, V) (Equation 

 without chemical potential) to a function H (S, p) the transformation reads as follows:  
 

(6) 
Where the potential H  in equation 6, d-
ing to the dif  

 
(7) 

needed to transform the substance into a gas . r-
mation of the Clausius- , as  given that when volume is con-
stant in equation 7 rev n-

 
. 

the Gibbs-Duhem relation (Equation 3), and is transformed as follows: 
 

(8) 
In fact, the latest equation (equation 8), when solved for a specific variable, gives one information about the 

, change of free 
-  

equa : 
 

(9) 
Where Tds and pdV equal to zero as to satisfy Euler’s equation. Further, when introducing   and 
di�erentiating, a relation of proportionality is found, stating that G is directly proportional to N and “the free 

cal potential” . r-
liquid vapor, and 

therefore, the Gibbs relation (Equation 3
for and introduced in the Clausius- v = 
the equation for ideal gases Vv and its integration read as:  

 
(10) 

 
 
 

relevant to equilibrium positions.  

on via the Legendre Transformation . 

 or  when p’ is the derivate of f(x).  In this way, keeping a determinate variable in the pr
cess of vaporization controlled, the atmospheric pressure, and hence changing the
1 without chemical potential) to a function H (S, p) the transformation reads as follows:

Where the potential H  in equation 6,
ing to the dif

needed to transform the substance into a gas 
mation of the Clausius-
stant in equation 7 rev 

. 
the Gibbs-Duhem relation (Equation 3), and is transformed as follows:

In fact, the latest equation (equation 8), when solved for a specific variable, gives one information about the 

equa : 

Where Tds and pdV equal to zero as to satisfy Euler’s equation. Further, when introducing 
di�erentiating, a relation of proportionality is found, stating that G is directly proportional to N and “the free 

cal potential”

therefore, the Gibbs relation (Equation 3
for and introduced in the Clausius-
the equation for ideal gases Vv 

of vaporization controlled, the atmospheric 
pressure, and hence changing the function U 
(S, V) (Equation 1 without chemical potential) 
to a function H (S, p) the transformation reads 
as follows (6):

 
 
 

4
 
 

vli is the specific volume for the substance in its liquid phase and vv is the specific volume for the substance in 
its vapor phase. This equation (5) is the Clausius-

then 5. These equations, still, must fulfill additional parameters to be true. As the latest re
 

 

relevant to equilibrium positions.  

on via the Legendre Transformation . 

 or  when p’ is the derivate of f(x).  In this way, keeping a determinate variable in the pr
cess of vaporization controlled, the atmospheric pressure, and hence changing the function U (S, V) (Equation 
1 without chemical potential) to a function H (S, p) the transformation reads as follows:  

 

Where the potential H  in equation 6, 
ing to the dif  

 

needed to transform the substance into a gas . 
mation of the Clausius- , as  given that when volume is co
stant in equation 7 rev 

. 
the Gibbs-Duhem relation (Equation 3), and is transformed as follows: 

 

In fact, the latest equation (equation 8), when solved for a specific variable, gives one information about the 
, change of free 

-
equa : 

 

Where Tds and pdV equal to zero as to satisfy Euler’s equation. Further, when introducing  
di�erentiating, a relation of proportionality is found, stating that G is directly proportional to N and “the free 

cal potential” . 
liquid vapor

therefore, the Gibbs relation (Equation 3
for and introduced in the Clausius- v = 
the equation for ideal gases Vv and its integration read as:  

 

 
              (6)

Where the potential H
6, is obtained following the assumption for 

 

 
 
 

4
 
 

Where sli v 
vli is the specific volume for the substance in its liquid phase and vv is the specific volume for the substance in 
its vapor phase. This equation (5) is the Clausius-

then 5. These equations, still, must fulfill additional parameters to be true. As the latest re
 

 

relevant to equilibrium positions.  

on via the Legendre Transformation . 

 or  when p’ is the derivate of f(x).  In this way, keeping a determinate variable in the pr
cess of vaporization controlled, the atmospheric pressure, and hence changing the function U (S, V) (Equation 
1 without chemical potential) to a function H (S, p) the transformation reads as follows:  

 

Where the potential H  in equation 6, 
ing to the dif  

 

needed to transform the substance into a gas . 
mation of the Clausius- , as  given that when volume is co
stant in equation 7 rev 

. 
the Gibbs-Duhem relation (Equation 3), and is transformed as follows: 

 

In fact, the latest equation (equation 8), when solved for a specific variable, gives one information about the 

-
equa : 

 

Where Tds and pdV equal to zero as to satisfy Euler’s equation. Further, when introducing 
di�erentiating, a relation of proportionality is found, stating that G is directly proportional to N and “the free 

cal potential” . 

therefore, the Gibbs relation (Equation 3
for and introduced in the Clausius- v = 
the equation for ideal gases Vv and its integration read as:

 

, the change of 

     
Luisa Valencia.: Boiling point of volatile liquids at various pressures  

  
 

 
 
 

4
 
 

 (5) 
Where sli v 
vli is the specific volume for the substance in its liquid phase and vv is the specific volume for the substance in 
its vapor phase. This equation (5) is the Clausius-

then 5. These equations, still, must fulfill additional parameters to be true. As the latest re-
 

 

relevant to equilibrium positions.  r-
m-
 so 

on via the Legendre Transformation . n-

 or  when p’ is the derivate of f(x).  In this way, keeping a determinate variable in the pro-
cess of vaporization controlled, the atmospheric pressure, and hence changing the function U (S, V) (Equation 
1 without chemical potential) to a function H (S, p) the transformation reads as follows:  

 
(6) 

Where the potential H  in equation 6, d-
ing to the dif  

 
(7) 

needed to transform the substance into a gas . r-
mation of the Clausius- , as  given that when volume is con-
stant in equation 7 rev n-

 
. 

the Gibbs-Duhem relation (Equation 3), and is transformed as follows: 
 

(8) 
In fact, the latest equation (equation 8), when solved for a specific variable, gives one information about the 

, change of free 
-  

equa : 
 

(9) 
Where Tds and pdV equal to zero as to satisfy Euler’s equation. Further, when introducing   and 
di�erentiating, a relation of proportionality is found, stating that G is directly proportional to N and “the free 

cal potential” . r-
liquid vapor, and 

therefore, the Gibbs relation (Equation 3
for and introduced in the Clausius- v = 
the equation for ideal gases Vv and its integration read as:  

 
(10) 

                                  (7)

realization of the vaporization of a liquid, 

     
Luisa Valencia.: Boiling point of volatile liquids at various pressures 

 

 
 
 

4
 
 

Where sli v 
vli is the specific volume for the substance in its liquid phase and vv is the specific volume for the substance in 
its vapor phase. This equation (5) is the Clausius-

then 5. These equations, still, must fulfill additional parameters to be true. As the latest re
 

 

relevant to equilibrium positions.  

on via the Legendre Transformation . 

 or  when p’ is the derivate of f(x).  In this way, keeping a determinate variable in the pr
cess of vaporization controlled, the atmospheric pressure, and hence changing the
1 without chemical potential) to a function H (S, p) the transformation reads as follows:

 

Where the potential H  in equation 6, 
ing to the dif  

 

needed to transform the substance into a gas . 
mation of the Clausius- , as  given that when volume is co
stant in equation 7 rev 

. 
the Gibbs-Duhem relation (Equation 3), and is transformed as follows: 

 

In fact, the latest equation (equation 8), when solved for a specific variable, gives one information about the 

equa : 
 

Where Tds and pdV equal to zero as to satisfy Euler’s equation. Further, when introducing 
di�erentiating, a relation of proportionality is found, stating that G is directly proportional to N and “the free 

cal potential” . 

therefore, the Gibbs relation (Equation 3
for and introduced in the Clausius- v = 
the equation for ideal gases Vv and its integration read as:

 

as 

     
Luisa Valencia.: Boiling point of volatile liquids at various pressures  

  
 

 
 
 

4
 
 

 (5) 
Where sli v 
vli is the specific volume for the substance in its liquid phase and vv is the specific volume for the substance in 
its vapor phase. This equation (5) is the Clausius-

then 5. These equations, still, must fulfill additional parameters to be true. As the latest re-
 

 

relevant to equilibrium positions.  r-
m-
 so 

on via the Legendre Transformation . n-

 or  when p’ is the derivate of f(x).  In this way, keeping a determinate variable in the pro-
cess of vaporization controlled, the atmospheric pressure, and hence changing the function U (S, V) (Equation 
1 without chemical potential) to a function H (S, p) the transformation reads as follows:  

 
(6) 

Where the potential H  in equation 6, d-
ing to the dif  

 
(7) 

needed to transform the substance into a gas . r-
mation of the Clausius- , as  given that when volume is con-
stant in equation 7 rev n-

 
. 

the Gibbs-Duhem relation (Equation 3), and is transformed as follows: 
 

(8) 
In fact, the latest equation (equation 8), when solved for a specific variable, gives one information about the 

, change of free 
-  

equa : 
 

(9) 
Where Tds and pdV equal to zero as to satisfy Euler’s equation. Further, when introducing   and 
di�erentiating, a relation of proportionality is found, stating that G is directly proportional to N and “the free 

cal potential” . r-
liquid vapor, and 

therefore, the Gibbs relation (Equation 3
for and introduced in the Clausius- v = 
the equation for ideal gases Vv and its integration read as:  

 
(10) 

 given that when volume is 
rev 

     
Luisa Valencia.: Boiling point of volatile liquids at various pressures  

  
 

 
 
 

4
 
 

 (5) 
Where sli v 
vli is the specific volume for the substance in its liquid phase and vv is the specific volume for the substance in 
its vapor phase. This equation (5) is the Clausius-

then 5. These equations, still, must fulfill additional parameters to be true. As the latest re-
 

 

relevant to equilibrium positions.  r-
m-
 so 

on via the Legendre Transformation . n-

 or  when p’ is the derivate of f(x).  In this way, keeping a determinate variable in the pro-
cess of vaporization controlled, the atmospheric pressure, and hence changing the function U (S, V) (Equation 
1 without chemical potential) to a function H (S, p) the transformation reads as follows:  

 
(6) 

Where the potential H  in equation 6, d-
ing to the dif  

 
(7) 

needed to transform the substance into a gas . r-
mation of the Clausius- , as  given that when volume is con-
stant in equation 7 rev n-

 
. 

the Gibbs-Duhem relation (Equation 3), and is transformed as follows: 
 

(8) 
In fact, the latest equation (equation 8), when solved for a specific variable, gives one information about the 

, change of free 
-  

equa : 
 

(9) 
Where Tds and pdV equal to zero as to satisfy Euler’s equation. Further, when introducing   and 
di�erentiating, a relation of proportionality is found, stating that G is directly proportional to N and “the free 

cal potential” . r-
liquid vapor, and 

therefore, the Gibbs relation (Equation 3
for and introduced in the Clausius- v = 
the equation for ideal gases Vv and its integration read as:  

 
(10) 

to be more convenient given that S is not 

called the Gibbs potential for it was named 

Gibbs-Duhem relation (Equation 3), and is 
transformed as follows (8):

     
Luisa Valencia.: Boiling point of volatile liquids at various pressures  

  
 

 (5) 
Where sli v 
vli is the specific volume for the substance in its liquid phase and vv is the specific volume for the substance in 
its vapor phase. This equation (5) is the Clausius-

then 5. These equations, still, must fulfill additional parameters to be true. As the latest re-
 

 

relevant to equilibrium positions.  r-
m-
 so 

on via the Legendre Transformation . n-

 or  when p’ is the derivate of f(x).  In this way, keeping a determinate variable in the pro-
cess of vaporization controlled, the atmospheric pressure, and hence changing the function U (S, V) (Equation 
1 without chemical potential) to a function H (S, p) the transformation reads as follows:  

 
(6) 

Where the potential H  in equation 6, d-
ing to the dif  

 
(7) 

needed to transform the substance into a gas . r-
mation of the Clausius- , as  given that when volume is con-
stant in equation 7 rev n-

 
. 

the Gibbs-Duhem relation (Equation 3), and is transformed as follows: 
 

(8) 
In fact, the latest equation (equation 8), when solved for a specific variable, gives one information about the 

, change of free 
-  

equa : 
 

(9) 
Where Tds and pdV equal to zero as to satisfy Euler’s equation. Further, when introducing   and 
di�erentiating, a relation of proportionality is found, stating that G is directly proportional to N and “the free 

cal potential” . r-
liquid vapor, and 

therefore, the Gibbs relation (Equation 3
for and introduced in the Clausius- v = 
the equation for ideal gases Vv and its integration read as:  

                                    (8)

In fact, the latest equation (equation 8), when 

information about the equation for internal 

     
Luisa Valencia.: Boiling point of volatile liquids at various pressures  

  
 

 (5) 
Where sli v 
vli is the specific volume for the substance in its liquid phase and vv is the specific volume for the substance in 
its vapor phase. This equation (5) is the Clausius-

then 5. These equations, still, must fulfill additional parameters to be true. As the latest re-
 

 

relevant to equilibrium positions.  r-
m-
 so 

on via the Legendre Transformation . n-

 or  when p’ is the derivate of f(x).  In this way, keeping a determinate variable in the pro-
cess of vaporization controlled, the atmospheric pressure, and hence changing the function U (S, V) (Equation 
1 without chemical potential) to a function H (S, p) the transformation reads as follows:  

 
(6) 

Where the potential H  in equation 6, d-
ing to the dif  

 
(7) 

needed to transform the substance into a gas . r-
mation of the Clausius- , as  given that when volume is con-
stant in equation 7 rev n-

 
. 

the Gibbs-Duhem relation (Equation 3), and is transformed as follows: 
 

(8) 
In fact, the latest equation (equation 8), when solved for a specific variable, gives one information about the 

, change of free 
-  

equa : 
 

(9) 
Where Tds and pdV equal to zero as to satisfy Euler’s equation. Further, when introducing   and 
di�erentiating, a relation of proportionality is found, stating that G is directly proportional to N and “the free 

cal potential” . r-

thus reads as (and should correspond to the 

(3) 
The latter equation, to make Euler’s equation for internal energy valid, must be equal to zero. If equation 1 is 

liquid vapor (p, T). If temperature is variated (dT) and thus pressure variates at 
an equivalent r liquid vapor (p, 

. -Duhem relation (Equation 3) in the following 
per Greiner et al: 

d  

 

(4) 

(in relation to the number of particles). After both equations (Equation 4) are equalized following that chemical 
-written as: 

 

Boiling point of volatile liquids at various pressures

PP: 87-101

 
 
 

the Gibbs

In fact, the latest equation

equ

Where Tds and pdV
di�erentiating, a relation of proportionality is found, stating that G is directly proportional to N and “the free 

therefore, the Gibbs relation (Equation 
for and introduced in the Clausius
the equation for ideal gases V

 
 
 

cess of vaporization controlled, the atmospheric pressure, and hence changing the
1 without chemical potential) to a function H (S, p) the transformation reads as follows:

Where the potential 
ing to the dif

needed to transform the substance into
mation of the Clausius
stant

the Gibbs

In fact, the latest equation

equ

Where Tds and pdV
di�erentiating, a relation of proportionality is found, stating that G is directly proportional to N and “the free 

therefore, the Gibbs relation (Equation 
for and introduced in the Clausius
the equation for ideal gases V
 
 
 

Where L is the specific latent heat of vaporization or 

presented above, if a liquid is heated

mospheric pressure, the substance will reach its boiling point as liq

will reach its boiling point at a temperature corresponding to 1atm. As noted in the equation for vap

greater than the vapor pressure a non

be greater resulting in a 
the same and the difference in initial pressure readings must equal the difference in boiling point.
 

The graph for vapor pressure versus temperature
pressure stated before
verse temperature, the relationship must appear linear and its slope should be the entha

initial pr
enthalpies are to be calculated and compared.
 



4
 
 

 

r-
m-
 so 
n-

when p’ is the derivate of f(x).  In this way, keeping a determinate variable in the pro-
cess of vaporization controlled, the atmospheric pressure, and hence changing the function U (S, V) (Equation 

without chemical potential) to a function H (S, p) the transformation reads as follows:  
 

(6) 
in equation 6, d-

 
 

(7) 

. r-
, as  given that when volume is con-

n-

 

), and is transformed as follows: 
 

(8) 
, when solved for a specific variable, gives one information about the 

, change of free 
-  

 
(9) 

equal to zero as to satisfy Euler’s equation. Further, when introducing   and 
di�erentiating, a relation of proportionality is found, stating that G is directly proportional to N and “the free 

cal potential” . r-
liquid vapor, and 

v = 
and its integration read as:  

 
(10) 

is the specific volume for the substance in 

. These equations, still, must fulfill additional parameters to be true. As the latest re-

r-
m-
 so 
n-

when p’ is the derivate of f(x).  In this way, keeping a determinate variable in the pro-
function U (S, V) (Equation 

(6) 
d-

(7) 

r-
given that when volume is con-

n-

(8) 
, when solved for a specific variable, gives one information about the 

, change of free 
 

(9) 
 and 

di�erentiating, a relation of proportionality is found, stating that G is directly proportional to N and “the free 
r-

, and 

(10) 

  

 (5) 

is the specific volume for the substance in 

. These equations, still, must fulfill additional parameters to be true. As the latest re-

r-
m-
 so 
n-

when p’ is the derivate of f(x).  In this way, keeping a determinate variable in the pro-
function U (S, V) (Equation 

(6) 
d-

(7) 

r-
given that when volume is con-

n-

 

(8) 
, when solved for a specific variable, gives one information about the 

, change of free 
 

(9) 
 and 

di�erentiating, a relation of proportionality is found, stating that G is directly proportional to N and “the free 
r-

liquid vapor, and 

and its integration read as:  

(10) 

Boiling point of volatile liquids at various pressures  
  

 (5) 

is the specific volume for the substance in 

. These equations, still, must fulfill additional parameters to be true. As the latest re-

r-
m-
 so 
n-

when p’ is the derivate of f(x).  In this way, keeping a determinate variable in the pro-
function U (S, V) (Equation 

without chemical potential) to a function H (S, p) the transformation reads as follows:  

(6) 
d-

(7) 

r-
given that when volume is con-

n-

 

(8) 
, when solved for a specific variable, gives one information about the 

, change of free 
-  

(9) 
equal to zero as to satisfy Euler’s equation. Further, when introducing   and 

di�erentiating, a relation of proportionality is found, stating that G is directly proportional to N and “the free 
r-

liquid vapor, and 

and its integration read as:  

(10) 

91

Respuestas

Cúcuta-Colombia

Vol. 22

No. 2

Julio - Dic. 2017

ISSN 0122-820X

E-ISSN 2422-5053

4
 
 

 

the Gibbs-Duhem relation (Equation 3), and is transformed as follows: 
 

(8) 
In fact, the latest equation (equation 8), when solved for a specific variable, gives one information about the 

, change of free 
-  

: 
 

(9) 
Where Tds and pdV equal to zero as to satisfy Euler’s equation. Further, when introducing   and 
di�erentiating, a relation of proportionality is found, stating that G is directly proportional to N and “the free 

cal potential” . r-
liquid vapor, and 

therefore, the Gibbs relation (Equation 3
for and introduced in the Clausius- v = 
the equation for ideal gases Vv and its integration read as:  

 
(10) 

         (9)

Euler’s equation. Further, when introducing 

liquid vapor, and therefore, 
the Gibbs relation (Equation 3) can be applied. 

solved for and introduced in the Clausius-
v 

ideal gases Vv
vapor pressure and its integration read as: 

4
 
 

 or  when p’ is the derivate of f(x).  In this way, keeping a determinate variable in the pro-
cess of vaporization controlled, the atmospheric pressure, and hence changing the function U (S, V) (Equation 

without chemical potential) to a function H (S, p) the transformation reads as follows:  
 

(6) 
Where the potential H  in equation 6, d-
ing to the dif  

 
(7) 

needed to transform the substance into a gas . r-
mation of the Clausius- , as  given that when volume is con-

in equation 7 rev n-

 

the Gibbs-Duhem relation (Equation 3), and is transformed as follows: 
 

(8) 
In fact, the latest equation (equation 8), when solved for a specific variable, gives one information about the 

, change of free 
-  

: 
 

(9) 
Where Tds and pdV equal to zero as to satisfy Euler’s equation. Further, when introducing   and 
di�erentiating, a relation of proportionality is found, stating that G is directly proportional to N and “the free 

cal potential” . r-
liquid vapor, and 

therefore, the Gibbs relation (Equation 3
for and introduced in the Clausius- v = 
the equation for ideal gases Vv and its integration read as:  

 
(10) 

                     (10)Luisa Valencia.: Boiling point of volatile liquids at various pressures  
  

 

 (11) 
Where L is the specific latent heat of vaporization or 8.3145 J mol-1 K-1, and P, T are 

 in both equation 10 and 11. In accordance to the information 
presented above, if a liquid is heated 

t-
mospheric pressure, the substance will reach its boiling point as liq

will reach its boiling point at a temperature corresponding to 1atm. As noted in the equation for vapor pressure, 
 

. or a higher 
 . The vapor pressure of a volatile substance is 

greater than the vapor pressure a non- To change the boiling point of a substance, 

be greater resulting in a higher boiling point. However, as the substance is the same, the rate of growth must be 
the same and the difference in initial pressure readings must equal the difference in boiling point. 

3. Previous analysis: 

The graph for vapor pressure versus temperature 
pressure stated before (equation 11), if the natural logarithm of the vapor pressure is graphed against the in-
verse temperature, the relationship must appear linear and its slope should be the entha

initial pr
enthalpies are to be calculated and compared. 

4. Variables: 

Controlled: ed 
in milliliters with a digital scale

                  (11)

8.3145 J mol-1 K-1, and P, T are the vapor 

both equation 10 and 11. In accordance to 
the information presented above, if a liquid 
is heated at different internal pressures 

will increase as heat increases the average 

pressure equalizes the atmospheric pressure, 
the substance will reach its boiling point as 

vapor pressure. As a result, a liquid heated 

normal internal pressure will reach its boiling 
point at a temperature corresponding to 1atm. 
As noted in the equation for vapor pressure, 

substances which tends to vaporize faster, 

volatile substance is greater than the vapor 

To change the boiling point of a substance, 

equilibrium with the vapor pressure in the 

will be greater resulting in a higher boiling 
point. However, as the substance is the same, 
the rate of growth must be the same and the 
difference in initial pressure readings must 
equal the difference in boiling point.

3. Previous analysis

The graph for vapor pressure versus 

to the equation for vapor pressure stated before 
(equation 11), if the natural logarithm of the 
vapor pressure is graphed against the inverse 
temperature, the relationship must appear 

of vaporization, which is to be calculated in 

valid. Various repetitions variating the internal 

result at the end as well as boiling points and 
difference in initial pressure reading over 
difference in boiling points, which should be 

are to be calculated and compared.

4. Variables

4.1 Controlled

unaltered), Volume of the substance 
(measured in milliliters with a digital scale), 

substance is used per trial), atmospheric 
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above the sea), Surface area (constant as the 

4.2 Independent

Temperature as the substance reaches its 

Vernier logger pro temperature sensor inside 
a hot bath). The temperature results are 
different per trial, however, the rate of change 
of temperature per trial is the same and thus 
can be set independent. It is important to 

does not behave as an independent variable. 

temperature is indeed an independent variable. 

4.3 Dependent

Internal Pressure (initial pressure plus 
vapor pressure as temperature is increased) 

logger pro sensor).

5. Materials

A Vernier logger pro.

A temperature sensor for the reader.

A vapor pressure sensor for the reader. 

Plus, the additional support parts of the 
sensors.

A Bunsen burner.

alcohol.  

A tripod, a ring stand and a Wire Gauze. 

6. Procedure 

Place the tripod and wire gauze over the 

with water and put it over the tripod, as 
indicated in Figure 1. 

Figure 1. Apparatus set up.

Measure 3mL of alcohol with the pipette 

Open the valve of the rubber stopper (an 

Put the temperature sensor inside the water 
after calibrating it, turn the readings of the 
logger pro on and wait for it to equilibrate.

After equilibrium is reached, turn on the 
Bunsen burner and start recording data for 
pressure and temperature.

cool down and reach room temperature 
and repeat the processes, but instead, 
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4. Put the temperature sensor inside the water after calibrating it, turn the readings of the logger pro on 
and wait for it to equilibrate. 

5. After equilibrium is reached, turn on the Bunsen burner and start recording data for pressure and te
perature. 

6. 
reach room temperature and repeat the proc

 
7. re readings per trial with initial pressure. The number of pressure vari

 
8.  

hol is far from fire or hot surfaces. 
 

7. Uncertainty evaluation: 

Variable measuring is bound to have a significant percentage of error which can be reduced if variables are 

mptions for the vapor pressure equation (equation 5), volume is constant, temperature 
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the amount of vapor eliminated from the 

per trial with initial pressure. The number 

Get rid of the alcohol considering 

7. Uncertainty evaluation

Variable measuring is bound to have a 

pressure equation (equation 5), volume is 
constant, temperature is set and vapor pressure 

which is transferred through the heat bath 
and thus controlled. However, the heat bath, 
for not attempting to resemble an adiabatic 

the two main variables, however, is minimal 
and results tend to be precise. Variables such 

The value for atmospheric pressure is 101.35 

will pop out the rubber stopper before the 
substance has reached its boiling point given 
that the gas occupies are larger volume than 
what its available. Other condition boundaries 

cause damages so the technological apparatus 

7.1 Data 

53.25 minutes. A sample of the data for one 
of the runs is listed below in Table I.

Table I. Sample data obtained.
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Table I. Sample data obtained. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

RUN 12 

TIME PRESSURE TEMPERATURE TEMPERATURE IT NP UNC P UNC  
T 

UNC 
C 

%UNC 
P 

%UNC 
T 

% UNC 
LNP %  1/T 

T P T T 1/T LN(p) KPa K C         

s KPa °C K T                 

0 32,2 20,3 293,5 0,003407736 3,47197 0,6 54,63 0,2 0,1863 18,62 3,474 6,5E-05 

1 32,21 20,3 293,5 0,003407736 3,47228 0,6 54,63 0,2 0,1863 18,62 3,474 6,5E-05 

2 32,21 20,3 293,5 0,003407736 3,47228 0,6 54,63 0,2 0,1863 18,62 3,474 6,5E-05 

3 32,21 20,3 293,5 0,003407736 3,47228 0,6 54,63 0,2 0,1863 18,62 3,474 6,5E-05 

4 32,21 20,3 293,5 0,003407736 3,47228 0,6 54,63 0,2 0,1863 18,62 3,474 6,5E-05 

5 32,21 20,3 293,5 0,003407736 3,47228 0,6 54,63 0,2 0,1863 18,62 3,474 6,5E-05 

6 32,21 20,4 293,6 0,003406575 3,47228 0,6 54,63 0,2 0,1863 18,62 3,474 6,5E-05 

7 32,27 20,3 293,5 0,003407736 3,47414 0,6 54,63 0,2 0,1863 18,62 3,474 6,5E-05 

8 32,27 21 294,2 0,003399626 3,47414 0,6 54,63 0,2 0,1863 18,62 3,474 6,5E-05 

9 32,27 21,1 294,3 0,003398471 3,47414 0,6 54,63 0,2 0,1863 18,62 3,474 6,5E-05 

10 32,27 21,1 294,3 0,003398471 3,47414 0,6 54,63 0,2 0,1863 18,62 3,474 6,5E-05 

11 32,21 18,9 292,1 0,003424071 3,47228 0,6 54,63 0,2 0,1863 18,62 3,474 6,5E-05 

12 32,27 20,3 293,5 0,003407736 3,47414 0,6 54,63 0,2 0,1863 18,62 3,474 6,5E-05 

13 32,21 20,3 293,5 0,003407736 3,47228 0,6 54,63 0,2 0,1863 18,62 3,474 6,5E-05 

14 32,34 20,2 293,4 0,003408897 3,4763 0,6 54,63 0,2 0,1863 18,62 3,474 6,5E-05 

15 32,27 20,2 293,4 0,003408897 3,47414 0,6 54,63 0,2 0,1863 18,62 3,474 6,5E-05 

16 32,27 20 293,2 0,003411223 3,47414 0,6 54,63 0,2 0,1863 18,62 3,474 6,5E-05 

17 32,27 20,1 293,3 0,00341006 3,47414 0,6 54,63 0,2 0,1863 18,62 3,474 6,5E-05 
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values seem to be unvaried. All variables are 
stated according to the information that was 

considering the graph of Natural lograithm of 
pressure against the inverse of temperature, 
error propagation will be considred too. The 

graph, shows as following (Figure 2). 

Figure 2. Pressure against Temperature.

 
 
 

Table 1: sample data obtained 
 Source: Authors 

Table 1 significant values 
 

uncertainties 
graph of Natural lograithm of pressure against the inverse of temperature, error propagation will be considred 
too. The first graph to be processed, the normal pressure graph, shows as following (Figure 2),  

Figure 2 shows the relationship between 
pressure and temperature, appearing to be 

added but are minimal and do not show in 

and following equation 11, the relationship 

graphing ln(pressure) against the inverse 
temperature as shown below in Figure 3: 
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Figure 3: Natural logarithm pressure against inverse Temperature.
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Source: Authors,  
 

Figure 2 e-
sized. Error bars were added but are minimal and do not show in Figure 2. In order to find the factor of growth 

 curve, and following equation 11, the relationship pressure-Temperature will 
graphing ln(pressure) against the inverse temperature as shown below in Figure 3:  

 
Figure 3: Natural logarithm pressure against inverse Temperature 

Source: Authors,  

Figure 3 shows the relationship between the 
natural logarithm of the pressure against 
the inverse temperature, relationship which 

such process. Now that error is propagated, 
error bars were added but again proved to be 

relevant. However, the latest graph (Figure 3) 
is not linear. In fact, the graph is linear until 

proceeds to be curved. This happened because 

changing the initial formulae that set dV as 
rev = 0. This error will be 

Figure 3 is linear. The linearization appears 
as following, 
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Figure 4. Linearized natural logarithm pressure against inverse Temperature.

 
 
 

 should be 
process. Now that error is propagated, error bars were added but again proved to be insignificant as error in this 

 (Figure 3) is not linear. In fact, the graph is linear until 
d then proceeds to be curved. This happened because the process was 

dV as zero and thus rev = 0. This error will be discussed later. The enthal t-
Figure 3 is linear. The linearization appears as following,  

Figure 4: Linearized natural logarithm pressure against inverse Temperature 
Source: Authors,  

 
Figure 4 -1 and having its 

for -pdV. 
Given that this trial corresponds to “normal pressure” then the theoretical 
should correspond to this result. For such, relative error in comp -1 will be 
calculated following /Equation 12):  

 

(12) 
Giving 27% of relative error. The reasons behind the high percentage of error will be l-

 
 The results for the remaining data read as follows (Table 2): 

1 and having its corresponding negative 

Legendre Transformation it holds the sign 

trial corresponds to “normal pressure” then 

vaporization should correspond to this result. 
For such, relative error in comparison to the 

1 will be calculated 
following /Equation 12): 

(12)

Giving 27% of relative error. The reasons 
behind the high percentage of error will 

accurate regarding the boiling point. Moving 

results for the remaining data read as follows 
(Table II):
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should correspond to this result. For such, relative error in comp -1 will be 
calculated following /Equation 12):  

 

Giving 27% of relative error. The reasons behind the high percentage of error will be 

 The results for the remaining data read as follows (Table 2): 
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the linearized graphs (Figure 3 and Figure 4) 

for lower initial values of pressure because 

be greater and thus its boiling point, which is 

as well. This can be elaborated noting that H 

presented. Still, the amount of error present 

measurement, which will also be discussed in 

depicted below (Figure 5),

Figure 5. Pressure against Temperature for all selected trials.

  
 

 
 
 

1
0
 

 
Table 2: Processed results for remaining selected trials 

Source: Authors. 
 (Figure 3 and Figure 4) -

-1), p  of vaporization is 

noting that  (equation 10) 

The percen e-
ment, which will also be discussed in the error section.  (Figure 5), 
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Figure 5 shows the comparison of the vapor 
pressure curves obtained from which several against internal pressure of the obtained 

samples shown below (Figure 6):
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Figure 6. Boiling Temperature against internal pressure of the selected samples.
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Figure 5 shows the comparison of the vapor pressure curves obtained from which several conclusions can be 
boiling point against internal pressure of the obtained 

samples shown below (Figure 6): 

 
Figure 6: Boiling Temperature against internal pressure of the selected samples 

Source: Authors,  
 the relationship between internal pressure and boiling point of a volatile liquid is 

nega that rate of growth of graphs which start at lower pres-
sures in Figure 5 ( 11, 12, 13) 

curves are steeper). After calculating the difference on initial pressure over the difference on final temperature 
per each pair of graphs one gets results close to one as of 2, 1.8, 1,5, etc., indicating that graphs in Figure 5 are 

drawn Figure 5 
starting at lower internal pressures will reach its critical point in temperature at lower temperatures as heat 
cannot longer be added to neither t t-

“normal” graphs (under normal pressure conditions as in Figure 2) will fulfil this parameter, displaced graphs 
as those in Figure 5 will reach it before, at lower temperatures. This happens because the heat needed to vapor-

 pressures, 

determine the a

onstant and equal (between vapor and liquid). 
8. Error evaluation 
1. The first error to be considered is the rubber stopper error, which would not fit in neither the definition 

Vernier products are 

between internal pressure and boiling point 

growth of graphs which start at lower 

of temperature) to reach a given value in 

(note curves are steeper). After calculating 
the difference on initial pressure over the 

of graphs one gets results close to one as of 2, 
1.8, 1,5, etc., indicating that graphs in Figure 

evidenced in Figure 5 is the fact that as the 

starting at lower internal pressures will reach 
its critical point in temperature at lower 
temperatures as heat cannot longer be added 
to neither the liquid (because its evaporated) 

normal pressure conditions as in Figure 2) 

those in Figure 5 will reach it before, at lower 
temperatures. This happens because the heat 
needed to vaporize the liquid is greater at lower 

additional value which is the increased one. 
Further, if the equation of the total differential 

can be obtained and compared, which, should 

equal (between vapor and liquid).
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8. Error evaluation

random error and is an unavoidable error 

the stopper before pressure reached and 
equalized one atm of pressure, however 
it is set to pop out and popping out the 
stopper requires an additional effort. 
In fact, popping out the stopper would 
mean that the volume of vapor must 

partial equilibrium of the two phases 

would be, for instance, to choose a bigger 

without popping the stopper out, and the 

to be linear (Figure 3) would be corrected. 

liquid would have proven to be a failure 
as the liquid would vaporize faster and 
noting that heat cannot be transferred to 
the liquid if there is no liquid, glass would 

The second error to be considered is the 
relative error in function to the theorized 

of a liquid starting a normal pressure. 
The concentration of the liquid studied 

reasons, has a concentration lower than 

such small volumes) but still isn’t a pure 
substance. Equations for pure substances 

because, again, difference is minimal. The 
percentage of error, in fact, corresponds 
to the percentage of concentration 
which isn’t part of the pure substance. 
As the substance used was dissolved 
with water and water vaporizes at higher 
temperatures, the amount of substance 
vaporized is smaller. Observing that the 
concentration of the substance used was 
of 70%, the remaining percentage, 30%, 
is equivalent to the error which is of 27%. 

The third error to be discussed is the 
error proper of the measuring apparatus. 
Although it was stated in Table 1 and its 
propagation was calculated, it did not 
appear relevant for both the original graph 

For said reason, a sample of the calculations 

Kelvin was calculated. For the percentage 
uncertainties, the absolute value for the 

uncertainties for one or a pair of variables 

the operation is a sum or a difference, the 

is canceled. For the natural logarithm, the 

added to the value for natural logarithm 
of pressure. The propagation of error was 

logarithm and 0.000001 K for the inverse 
temperature.

Luisa María Valencia, Christian Andrés Aguirre-Téllez

PP: 87-101



100

Respuestas

Cúcuta-Colombia

Vol. 22

No. 2

Julio - Dic. 2017

ISSN 0122-820X

E-ISSN 2422-5053

 The fourth error to be considered is a 
human error regarding data processing. 
Graphs appear to have gaps (appear to 

the Vernier logger pro data reader and 
collector was set to collect data until 

twice or thrice as long. When I realized, 

and the function appears to have holes 
in them. Let it be clear that being more 
careful would have avoided the error and 

(Figure 2, 3, 4 and 5) could still be studied 

The last error to be considered encompasses 

amount of alcohol to be used to determine 
the temperature at which the substance 
boils as being the same temperature at 

has a large potential amount of error. 

results as demonstrated in table 2.0, one 

relationship between the variables was 

this error, as well as the understanding 

to pop the rubber stopper out, aids the 
comprehension of the drastic change in 

data towards the end of their recordings 

effort to pop the rubber stopper off and 

additional effort.

9. Additional conclusions and 
improvements

improvement would be to change the 

larger. 

Another improvement would be to use 
a substance with a hundred percent 
of concentration. Although error can 

gasoline, ethanol, etc.)

Another improvement would be to get a 

reversible heat lost when heating water 

impossible to measure, this variation of 
the increase in temperature can be seen 
in the graph (Figure 2) given that for 

decreases and increases. The latter, whilst 

equilibrium points, the main purpose was 

process for which boiling pressure and 
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initial pressure reading where the data 
compared. 

10. Proposals

more interesting conclusions.
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