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RESUMEN

La determinación del Hamiltoniano de una molécula o un cristal puede llegar a ser un problema muy complicado; sin embargo, las consideracio-
nes de simetría sobre el problema pueden llegar a simplificarlo de manera sustancial. Razón por la cual, es pertinente buscar el mayor número 
de simetrías de un cristal. En este punto, se realza la importancia de la teoría de grupos como herramienta de cálculo, pues  a través de ésta, se 
sintetizan todas las propiedades del cristal: las rotaciones, las inversiones y las reflexiones. Empero,  el estudio realizado por muchos libros 
acerca de esta temática es demasiado confuso y complicado para los estudiantes de Licenciatura en Física, debido a la naturaleza abstracta del 
método de la teoría, y las relaciones que éste tiene con el Hamiltoniano. Lo anterior, motiva la realización de un estudio didáctico, así como 
detallado de los principios que rigen el uso del método. Además, se ilustra a través de un ejemplo detallado para el caso de un cristal ortorrómbi-
co, procediendo a establecer los isomorfismos entre el álgebra utilizada en la teoría de grupos y la correspondiente representación de matrices, 
que permita efectuar la reducción del Hamiltoniano y los cálculos correspondientes.
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ABSTRACT

The determination of the Hamiltonian in a molecule or a crystal can become a very complicated problem. However, symmetrical considerations 
of the problem may significantly simplify it. Therefore it is important to find the greatest number of  crystal symmetries. This point highlights 
the importance of group theory as a calculation tool which synthesizes all crystal properties such as rotations, inversions and reflections. 
However, the study completed in many books concerning this subject is rather confusing and complicated for graduate students of Physics to 
understand due to the abstract nature of theoretical method and its relationship with the Hamiltonian. This paper encourages the execution of a 
didactic study, as well as the inclusion of detailed principles governing the use of the method. It is further illustrated through a detailed example 
of an orthorhombic crystal, subsequently establishing the isomorphism between the algebra used in group theory and the corresponding matrix 
representation, leading to a reduction in the Hamiltonian and its calculations.

This paper shows an application of group theory to the solid 
state, studying the Hamiltonian in an atomic perspective. In 
order to realize this method, the main characteristics of an 
orthorhombic crystal (OC) are shown in section 2.  In section 3, 
the symmetry operations of the crystal, how they make a group 
and the operation table of the group are analyzed and displayed. 

The following paragraph provides some important mathemati-
cal detail, relating to the concept of classification and isomor-
phisms with linear algebra. In the final section, the concept of 
reduced representation is discussed, and how it establishes 
conditions that help in the considerable simplification of the 
Hamiltonian because of its close relationship with the system’s 
symmetry.

The orthorhombic crystal (O. C.) When analyzing the main 
characteristic that separates a matter’s solid state from the other 
states, the spacing and organization of the substance’s atom is 
taken into account. Therefore, information on this organization 
should clarify the explanation of the material’s behaviors and 
properties. Due to the small spaces between the atoms, 
electrostatic forces prove significant by reducing the system’s 
disorder. 

Furthermore, it should be noted that not all substances have the 
same chemical components; their organizations may vary 
considerably, however, almost all solids have a particular 
molecular organization, or crystal, which to this effect is 
determined as:

“[A crystal is] composed of atoms arranged in a pattern that 
is repeated periodically in three dimensions” [1]
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As the crystal’s structure appears identical throughout the 
whole material, we may consider the crystal as a "brick" with 
which a material is constructed. This concept is also often 
referred to as a crystalline network [2], which can be made up 
of different shapes and sizes of the "bricks". In general, the 
differences do not lie in the components of the network, but in 
the length and angles that form the side edges, which are called 
primitive axes a1, a2 y a3 [3]. One of these crystals is the O. C. 
in which, despite the fact that all the angles formed by their 
sides are at 900, their sides are all different.

Plane of symmetry: The O. C. has three planes of symmetry, 
two verticals σv and one horizontal σh, all of them parallel to 
two crystal faces.

The Cayley table for the symmetry operations of the O. C. is 
shown below.

Where     is used to specify a binary operation, because the 
mathematical meaning of performing a symmetry operation 
followed by the other (it could be a sum or a multiplication) is 
actually unknown. To that effect, many of the symmetry  
operations can be obtained by applying two symmetry           
operations consecutively. 

The symmetries of a O. C. Concerning symmetry, it is establis-
hed that: 

"An object or figure is said to have symmetry if some move-
ment of the figure or operation on the figure leaves it in a 
position indistinguishable from its original position" [4] 

Below, an O. C. is shown:

Figure 1. An orthorhombic crystal formed by the same atoms in each corner, with 
three axes of rotation Ca and three planes of reflection σ.

The O. C. presents the following types of symmetry:
Identity operation [5]: where the crystal remains in its initial 
position.

Symmetry rotation axis of order n: For the O. C. there are three 
C2, perpendicular to the faces of the crystal and denoted in the 
figure by     ,      and     . The order 2 means that it only supports 
the rotation of 00 and 1800.

aC2
bC2

 cC2

 

However, two of these alternating axes       and               (those 
related to C and C ), generate a configuration that can be   
retrieved through other symmetry operations. These operations 
have some special properties. For example, suppose the         
operation of center of symmetry i. For the O. C. this operation 
is equal to the alternating axis symmetry operation with respect 
to C , and can be obtained by applying two symmetry             
operations consecutively, in the following way:

bS2
cS2  

ba

Center of symmetry: The center of the crystal coincides with a 
center of symmetry.

Alternating axis of symmetry of order n [6]: The O. C. has 
three of such axes, each one associated to an axis and a perpen-
dicular symmetry plane. They are denoted as     ,      and              
respectively.

aS2
bS2

cS2  

aC2 σ aS2h =

Figure 2. Result of two consecutive symmetry operations.

(1)

Table I Cayley table of the O. C. 
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It is observed that by using these eight elements, all possible 
symmetry operations of the system are considered (remember 
that S  = i). Therefore, this set of symmetry operations fulfills 
the properties of and thus forms a group,  as explained below:

1. It is closed under the defined operation. In our example, all 
combination of operation results are included in the table.

2. It fulfills the associative property: It is clear to see that the 
elements of this table fulfill the property.

3. It has a neutral element: In the crystal in question, it is the 
identity operation.

4. Existence of the opposite element: in the case of the crystal, 
it is the same symmetry operation.
Moreover, due to the fact that the addition table is symmetric 
diagonally across, the group is commutative or Abelian [7].

Some additional mathematical elements To  understand the 
relationship between the symmetry and the system’s energy, it 
is necessary to transform the information obtained in the 
previous section into matrix form. To do this, two concepts 
must be taken into account, the first being related with class, 
which indicates that: P and Q are to be two members of a group. 
They are said to be members of the same class if they are 
related by the equation.

Where X is any member of the group, including P and Q [5]. 
Since the group of an O. C. is commutative, the group has eight 
classes.

The next important concept is the concept of irreducible    
representation of a group [5]. It makes it possible to determine 
that some mathematical elements can behave in the same way 
as the elements of table 1.

An example of this concept would be the 3x3 diagonal matri-
ces; their elements in the diagonal can only be 1 or -1; if the 
usual multiplication of matrices is done (that is, of rows by 
columns), a matrix that complies with the initial characteristics 
is again produced. 

To illustrate, the matrices associated with the operation descri-
bed in (1) are:

(2)

 

a

PXXQ 1−=

(3)

 

















−
−

−
=

















−
×















−

−

100
010
001

100
010
001

100
010
001

However, this is not the only possible representation; there are 
other elements between which an isomorphism can be propo-
sed [7], that is, a one-to-one correspondence between the 
elements in the Cayley table and other mathematical elements. 
In group theory, there are two types of representations: the 
reducible representations¸ which are the most compact, 
non-composite representations. In order to know how many 
reducible representations a group will have, the following 
theorem is used:

The number of irreducible representations of a finite group is 
equal to the number of p classes [8].

(4)

(7)

Therefore, this group has eight reducible representations. Aside 
from the usual inaccurate representation [5], we can propose 
the following representation    :

This complies with the Cayley table cannot be simplified 
further. On the other hand, the one presented in (3) can be 
written as:

The sum of the squares of the dimensions dγ of the irreducible 
representations of a finite group is equal to the order of the 

group [8]:

It is known that there are eight reducible representations in the 
system, but what do the dimensions of these representations 
look like? What will be the order of the matrix representations? 
In that vein, it was found that there are two representations of 
dimension 1: the inaccurate one, and the one shown in 
equations (5) and (6). If the following theorem is analyzed:

Since the order of the group is 8, there is no other option than 
for the dimensions of the irreducible representations to be 
one-dimensional.

At this point, one has all the mathematical information neces-
sary to determine the shape of the Hamiltonian. 

E = C = C = C = 1a b c

(5)σ = σ = σ = S = 1a a
h

b

(6)
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
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
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γ
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It is important to keep in mind that, although there are eight 
irreducible representations, (but only four distinct ones), a 
representation will be written in the following way:

This equation is a useful result, extracted from group theory. 
Here     is a type of irreducible representation. A way to find the 
Hamiltonian of the system when the matter is in solid state is 
through the Ritz method [8], which consists of proposing 
functions that allows one to discover the energy of the system. 
In doing so, the energy of the system can be defined by:

It is observed that there is a significant reduction in 
the degree of difficulty of the secular determinant, 
since 70% of its components are already eliminated, 
which demonstrates the usefulness of having the 
information of symmetry operations and all other 
information provided by the group theory. This 
demonstrates to the students the importance of group 
theory in relation to the physical aspects of the 
system

Where Sij are overlap integrals [5] and the determinant is the 
secular determinant [8]. The Hamiltonian is a de facto           
symmetric operator if there are symmetries within the system, 
and its elements not in the diagonal line are made equal to the 
overlap integrals. To know which elements survive in the   
determinant (9), the representation (8) can be used, which 
demonstrates how the system is in degeneration, given the 
supra-indices of the equation. 

Then, the determinant will consist of two non-degenerate 
functions, two that are two, three and four times degenerate, 
respectively. Thus, when defining the matrix of the                   
determinant, it will have twenty rows and columns; the secular 
determinant will have the shape shown in equation (10), where 
the shaded spaces are the components of the matrix that are 
different from zero.

Conclusions 

In the present work, an analysis of the symmetry operations of 
a O. C. was made; and with these symmetry operations a 
Cayley table was proposed and it was verified that the opera-
tions belonged to a group. 

Later, isomorphisms were discovered, with the matrix algebra 
and the irreducible representations associated with the group 
were found. Finally, with these results, relationships were 
established with the functions that determine the energy of the 
system, and with this information a substantial simplification 
of the secular determinant of the system was made.

(8) 4321 2222 Γ+Γ+Γ+Γ=Γ

1Γ

(9)0det =− ijij SH λ

(10)
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