
53

Respuestas, 23 (2) July - December 2018, pp. 53-61, ISSN 0122-820X

Received on January 10, 2018 - Approved on May 29, 2018.

ABSTRACT

Keywords:

Multiagent
systems,
nonparametric
approximator,
reinforcement
learning, trajectory
generation

This paper presents a hybrid control proposal for multi-agent systems, where the advantages of the
reinforcement learning and nonparametric functions are exploited. A modified version of the Q-learning
algorithm is used which will provide data training for a Kernel, this approach will provide a sub optimal set
of actions to be used by the agents. The proposed algorithm is experimentally tested in a path generation task
in an unknown environment for mobile robots.

Palabras clave:

Sistemas
multiagentes,
aproximador
no paramétrico,
aprendizaje por
reforzamiento,
generación de
trayectorias

En este artículo se presenta una propuesta híbrida de algoritmo de control para sistemas multiagentes, en
donde se aprovechan las ventajas del aprendizaje por reforzamiento y de las funciones de aproximación
no paramétricas. Se utiliza una versión modificada del algoritmo Q-learning la cual proveerá de datos de
entrenamiento para un Kernel, el cual ofrecerá una aproximación sub-óptima de acciones a realizar por los
agentes. El algoritmo propuesto es probado experimentalmente en una tarea de generación de trayectoria en
un entorno desconocido para robot móviles.

RESUMEN

*Corresponding author.
E-mail address: david.luviano@uacj.mx (David Luviano Cruz)

Peer review is the responsibility of the Universidad Francisco de Paula Santander.
This is an article under the license CC BY-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Original Article https://doi.org/10.22463/0122820X.1738

Journal of Engineering SciencesJournal of Engineering Sciences

Multiagent reinforcement learning using Non-Parametric Approximation
Aprendizaje por reforzamiento para sistemas multiagentes utilizando Aproximación No Paramétrica

David Luviano Cruz1*, Francesco José García-Luna2, Luis Asunción Pérez-Domínguez3

1*Doctor en Ciencias, david.luviano@uacj.mx, Orcid: 0000-0002-4778-8873, Universidad Autónoma de Ciudad Juárez, Juárez, México.
2Doctor en Ciencias, francesco.garcia@uacj.mx, Orcid: 0000-0002-8571-914X, Universidad Autónoma de Ciudad Juárez, Juárez, México.
3Doctor en Ciencias en Ingeniería, luis.dominguez@uacj.mx, Orcid: 0000-0003-2541-4595, Universidad Autónoma de Ciudad Juárez, Juárez, México.

How to cite: D.L. Cruz, F.J. García-Luna, L.A. Pérez-Domínguez, “Multiagent reinforcement learning using Non-Parametric
Approximation”, Respuestas, vol. 23, no. 2, pp. 53-61, 2019

Introduction

There are Research related to multiagent systems
(MAS) is an emerging subfield of distributed artificial
intelligence, which aims to provide principles for
building complex systems through the integration of
multiple agents.

There are features in MAS that distinguish it from

a single-agent control system. First the agents are
considered partially autonomous, this is due to the
fact that the agents do not have available all the global
information and therefore of the work environment,
reason why they can only have access to a limited
information, second in the MAS an individual agent
cannot decide an optimal action only using his local
knowledge [1].

54

where a trajectory is generated from a starting point to
an end point respecting certain restrictions imposed
on movement, such as obstacles, delimitation of the
trajectory area.

The problems addressed by RL are generally limited
to problems with discrete states and with a finite
number of actions available to agents. This is due
to the so-called curse of dimensionality, which is
the exponential growth of state-action pairs to learn
as the number of states and actions increase in the
problem, leading to an increase in computation time
and the amount of memory needed to store the data
associated with the algorithm [4].

Therefore, it is necessary to incorporate an additional
strategy to learning by reinforcement, which offers
the opportunity to generalize the results obtained.
There are two approaches to be used to approximate
action-state values in RL, one of them is the
parametric approximators, where the functional
form of the mapping and the number of parameters
are designed beforehand and do not depend on
the data [5], on the other hand, in non-parametric
approximators, the number of parameters and the
shape of the approximator are derived as a function
of the available data.

The article proposes a methodology that takes
advantage of the RL along with a non-parametric
approximator in the form of Kernel, the algorithm is
integrated by two stages of learning, the first will use
the Q-learning algorithm, where the model of the task
is known, at this stage the agent will explore the task
environment in order to collect information states-
actions, that is to say which is the optimal action to
take each one of the explored states, in the second
stage, the information obtained by the algorithm of
RL will be used to adjust the weights of the Kernel,
which will offer us the optimal actions to take by the
agent (robot) in states that were not explored in the
first stage of learning.

The proposed algorithm is validated by means
of simulation, where the generation of optimal
trajectories for mobile robots is sought under a
cooperative task scheme.

Respuestas, 23 (2) July - December 2018, pp. 53-61, ISSN 0122-820X

David Luviano Cruz, Francesco José García-Luna, Luis Asunción Pérez-Domínguez

Multi-agent systems have found applications in a
wide variety of fields such as robot teams playing
soccer, distributed control, unmanned aerial vehicles,
training control, resource and traffic management,
systems support, data mining, design engineering,
intelligent search, medical diagnostics, product
delivery, among others. The agents that make up a
MAS have to deal with environments that can be
static or dynamic, deterministic (an action has a
single effect) or non-deterministic, discrete (there is
a finite number of actions and states) or continuous
[2].

For example, most existing artificial intelligence
techniques for individual agents have been developed
in static media as they are easier to handle and allow
for rigorous mathematical treatment. In MAS, with
the mere presence of multiple agents they make a
static environment appear as dynamic from the point
of view of other agents.

Although traditional control approaches seek to
equip agents with MAS with pre-programmed or
pre-designed behaviors, agents often need to learn
new behaviors online so that MAS performance
gradually improves. This is because the complexity
of the working environment in which the agents
operate and the tasks assigned to them make an a
priori design of the control laws difficult or even
impossible.

An agent that learns through Reinforcement Learning
(RL) acquires knowledge through interaction with the
dynamic environment where it performs its assigned
task. In each step of time, the agent perceives the
state of the environment and executes a determined
action, which generates that the environment
transitions to a new state. A reward signal scale
evaluates the quality of each state transition so the
agent must maximize the reward accumulated during
the interaction with the environment, it is important
to mention, the agents are not told what action to
take, so they must explore the environment to find
the actions that provide a greater reward in the long
term [3].

One area where learning by reinforcement has been
successful is trajectory planning for mobile robots,

55

Materials and methods

Reinforcement learning for multi-agent Systems

The generalization of Markov’s decision-making
process in learning by reinforcement in multi-
agent systems (MARL) is the so-called stochastic
game [7]. The stochastic game is defined as a tuple

()nn fAAAS ρρρ ,...,,,,,...,,, 2121

[]
n

i

AAA
SSf
SS

××=
→×
→×

....
1,0:

R:

21A
A
A
×
×ρ

where n is the number of agents, S is the finite

set of states in the environment, iA ni ,...,1= are
the finite sets composed of the available actions
of each agent, producing the set of joint actions

nAAAA ×××= ...21 , iρ is the function of reward
for the agent which is considered limited and the
function of transition probability of states being

.f In MAS state transitions are the result of joint
actions taken by all agents in discrete step time. t :

[] itit
TT

tn
T

tt Aaaa ∈∈= ,,,1 ,,,..., Aaa

Policies

[]1,0→×= ii ASπ

Together they form the policy of joint action .π

Since the reward signals 1, +tir of the agents depends
on a joint action carried out by all the agents, their
return R for a multi-agent system depends on the
joint policy:









== +

∞

=
∑ ππ ,)(01,

0

ssrExR ti
t

t
i γ

The function Q of each agent depends on joint
action and joint action policy:

In entirely cooperative stochastic games, the
reward functions are the same for all agents

nρρρ === ...21 which implies that the returns R

are also the same πππ
nRRR === ...21 Therefore, all

agents have the same objective which is to maximize
the common return.

The optimal function Q is defined as ∗Q

() ()asQasQ ,max, π

π
=∗

Which satisfies Bellman’s optimization equation.:

Once ∗Q is available, an optimal stock policy can
be calculated by choosing in each state a stock with
the highest value Q optimal:

() ()asQx
a

,maxarg ∗∗ =π

A generalized approach used to solve the problem
of coordination in MAS is to make sure that any
decision situation is solved in the same way by all
the agents using some type of negotiation. In our
proposal, implicit coordination is used, where agents
learn to choose actions in a coordinated way through
trial and error.

Q-learning algorithm

There are a large number of algorithms available
for learning by reinforcement, one of the most
popular methods in RL is the Q-Learning algorithm,
which uses an iterative approach procedure [8].
Q-Learning begins with an arbitrary function Q ,

observe transitions ()11,,, ++ tttt rsas and after each
transition updates the function Q with:

:

() () () () AaSsasQsussasfasQ
aSs

∈∈



 +=

′′

′

′′ ∗

∈

∗ ∑ allfor ,max,,,,, γρ

() () () () AaSsasQsussasfasQ
aSs

∈∈



 +=

′′

′

′′ ∗

∈

∗ ∑ allfor ,max,,,,, γρ

Respuestas, 23 (2) July - December 2018, pp. 53-61, ISSN 0122-820X

Multiagent reinforcement learning using Non-Parametric Approximation









==

×

+

∞

=
∑ π=

→

π

π

,,),(

R:

001,
0

aaa

A

ssrEsQ

SQ

ki
k

k
i

i

γ

56

The term in square brackets is called a temporal
difference. The learning parameter (]1,0∈α can be
variant in time and usually decreases with time.

The sequence tQ converges on ∗Q under the
following conditions [8]:

•	 Different function values Q are saved and
updated for each action-state.

•	 The summation α∑∞
=0t is finite.

•	 Asymptotically all action-state pairs are visited
infinitely.

The third point can be satisfied if agents are kept
trying all actions in all states that have non-zero
probability of happening. This requirement is called
exploration, which can be done in several ways, one
of them is choosing in each step a random action
with probability. ()1,0∈ε and choosing a greedy
action with probability ,1−ε this way we get a
greedy exploration.

Learning by means of Non-Parametric Kernel
approximator

The algorithms that use RL obtain a policy of optimal
actions from the optimal values obtained during the
learning process, most of these methods are based
on discrete considerations of the environment and a
limited number of states, actions and agents in order
to avoid the problem of dimensionality.

Since most real applications have a large number
of states and the Q-Learning algorithm is based on
search tables, the non-parametric approximation
method based on Kernel is used to approximate the
unknown states that are not visited when the RL
algorithm is carried out, also to make generalizations
when the environment has been slightly modified,
in both cases avoiding the need to recalculate the
optimal policies.

In the approach phase we assume that we have a

collection of data ts coming from the observation
of the agents, taken in the interval [],, 21 ττ∈t these

data come from the model: () εφ +=+ tt ss 1ˆ .

where ()tsφ is an unknown soft response curve
and ε is the mistake. The goal is to find an estimate

of Kernel φ̂ at some point in a pre-specified time .t
The Kernel is simply a weighted average of all data
points:

Where ,112 +−= ττN kW is the sequence of

weights. The estimated state is denoted by: .ˆ 1
n

t Rs ∈+

A conceptually simple representation of the sequence

of weights tW , is by describing the shape of the
weight function by means of a density function with
a scaling parameter that has the function to adjust
the size and shape of the weights near the data points

.ts It is common to refer to this shaping function
as a kernel []zK . The kernel is a real, continuous,
dimensioned and symmetrical function which can be

integrated into one [] 1=∫ dzzK

The sequence of weights for the kernel is defined by:

where () ()[],ˆ 2
1

1 tsKNsf kkt ∑= =
− τ

τ ()[]tsK k is a
Gaussian function:

The regression carried out by the Kernel for the data
() ()[]tska , according to Nadaraya-Watson [10],

where []21,ττ∈t is:

In automatic control applications all random variables
have a constant probability density function, with this

() ()



 −++=

′

′ ++++ ttttt
a

ttttttt asQasQrasQasQ ,,max),(),(1111 γα

() ()



 −++=

′

′ ++++ ttttt
a

ttttttt asQasQrasQasQ ,,max),(),(1111 γα

()[] 0,
2

exp 2

2

>












 −
= a

s
atsK tt

t σ
c

Respuestas, 23 (2) July - December 2018, pp. 53-61, ISSN 0122-820X

David Luviano Cruz, Francesco José García-Luna, Luis Asunción Pérez-Domínguez

()() ()[] ()
()[]tsK

tatsK
ts

kt

kt

∑

∑
=

=

=

2
1

2
1ˆ
τ
τ

τ
τφ

() ()tasWNs tt
k

t ∑
=

−=
2

1

1ˆ
τ

τ

φ

()[] ()tkttt sftsKsW ˆ/=

57

type of random variables, the summation implied by
the kernel function is equivalent to a Monte Carlo
integration:

Therefore, the regression proposed by Nadaraya
used in the kernel can be replaced by the regression
proposed by Priestley-Chao [9], which is defined as:

						 (1)

Given the above the expression (1) is used to model
the unknown or unexplored states of the environment.
One possible way is to design an expanded kernel
function in order to encompass a larger amount of
data by means of a full amplitude:

where maxσ is chosen on the basis of the total

number of data obtained, e.g.

       tatsK
N

ts t
t




2

1

2ˆ




 (1)

Given the above the expression (1) is used to model the unknown or unexplored states of
the environment. One possible way is to design an expanded kernel function in order to
encompass a larger amount of data by means of a full amplitude:

  2ln22max 

where max is chosen on the basis of the total number of data obtained, e.g. ,10max

N
the amplitude parameter of the Gaussian function is given by:

 2ln220
N



Where the total data available is.

Proposed learning algorithm
Proposed learning flow is show in the figure 1.

Figure 1. Proposed
learning flow

At every discreet step of time t , the states where the agents are located are observed and
these are referred to a table of states-actions called Q -tabla. The Q-learning algorithm is

used to obtain optimal actions, from the data of Q which is obtained at the end of the
convergence of the algorithm.

When the states where the agents are located are not available in the Q-table, either because
they were not explored during the learning algorithm by reinforcement or by the occurrence
of small changes in the environment, the actions to be performed by the agents will be

 the
amplitude parameter of the Gaussian function is
given by:

Where the total data available is.

Proposed learning algorithm

Proposed learning flow is show in the figure 1.

Figure 1. Proposed learning flow

At every discreet step of time t , the states where
the agents are located are observed and these are
referred to a table of states-actions called Q -tabla.
The Q-learning algorithm is used to obtain optimal

actions, from the data of ∗Q which is obtained at the
end of the convergence of the algorithm.

When the states where the agents are located are
not available in the Q-table, either because they
were not explored during the learning algorithm by
reinforcement or by the occurrence of small changes
in the environment, the actions to be performed
by the agents will be approximate Kernel. The
new approach will be sent to the agents in order to
continue the task entrusted.

The previously trained approximator generates as
output a sub-optimal action for each agent in the
environment, thus avoiding to run the RL algorithm
again when the agents face an unknown state.

The proposed method can be listed in the following
steps:

1)	 The initial states of each training cycle of the RL
Q-learning algorithm are captured: The current
state of the agents’ state with respect to the
environment is captured through sensors.

2)	 Limit the number of captured states: The
limitation of captured states reduces the set of
states agents require to complete the task which
saves time and computing power.

3)	 Establish the actions available to the agents: At
each moment the agents are required to carry
out an action with a degree of coordination,
therefore, it is necessary to select in advance
the most reliable actions to be carried out by the
agents, with the aim of keeping the space for
actions minimized and avoiding dimensionality
problems.

4)	 Estimate the Q-state-action values of each
agent: The numerical reward of each action is
calculated and given to the agent after a joint
action is performed, the values obtained are
saved in a search table called Q-table.

5)	 Repeat steps 2-4 until the agents reach the
target: The training cycle ends if the agents
reach the final objective or if an established limit
of iterations is reached.

       tatsK
N

ts t
t




2

1

2ˆ




 (1)

Given the above the expression (1) is used to model the unknown or unexplored states of
the environment. One possible way is to design an expanded kernel function in order to
encompass a larger amount of data by means of a full amplitude:

  2ln22max 

where max is chosen on the basis of the total number of data obtained, e.g. ,10max

N
the amplitude parameter of the Gaussian function is given by:

 2ln220
N



Where the total data available is.

Proposed learning algorithm
Proposed learning flow is show in the figure 1.

Figure 1. Proposed
learning flow

At every discreet step of time t , the states where the agents are located are observed and
these are referred to a table of states-actions called Q -tabla. The Q-learning algorithm is

used to obtain optimal actions, from the data of Q which is obtained at the end of the
convergence of the algorithm.

When the states where the agents are located are not available in the Q-table, either because
they were not explored during the learning algorithm by reinforcement or by the occurrence
of small changes in the environment, the actions to be performed by the agents will be

       tatsK
N

ts t
t




2

1

2ˆ




 (1)

Given the above the expression (1) is used to model the unknown or unexplored states of
the environment. One possible way is to design an expanded kernel function in order to
encompass a larger amount of data by means of a full amplitude:

  2ln22max 

where max is chosen on the basis of the total number of data obtained, e.g. ,10max

N
the amplitude parameter of the Gaussian function is given by:

 2ln220
N



Where the total data available is.

Proposed learning algorithm
Proposed learning flow is show in the figure 1.

Figure 1. Proposed
learning flow

At every discreet step of time t , the states where the agents are located are observed and
these are referred to a table of states-actions called Q -tabla. The Q-learning algorithm is

used to obtain optimal actions, from the data of Q which is obtained at the end of the
convergence of the algorithm.

When the states where the agents are located are not available in the Q-table, either because
they were not explored during the learning algorithm by reinforcement or by the occurrence
of small changes in the environment, the actions to be performed by the agents will be

       tatsK
N

ts t
t




2

1

2ˆ




 (1)

Given the above the expression (1) is used to model the unknown or unexplored states of
the environment. One possible way is to design an expanded kernel function in order to
encompass a larger amount of data by means of a full amplitude:

  2ln22max 

where max is chosen on the basis of the total number of data obtained, e.g. ,10max

N
the amplitude parameter of the Gaussian function is given by:

 2ln220
N



Where the total data available is.

Proposed learning algorithm
Proposed learning flow is show in the figure 1.

Figure 1. Proposed
learning flow

At every discreet step of time t , the states where the agents are located are observed and
these are referred to a table of states-actions called Q -tabla. The Q-learning algorithm is

used to obtain optimal actions, from the data of Q which is obtained at the end of the
convergence of the algorithm.

When the states where the agents are located are not available in the Q-table, either because
they were not explored during the learning algorithm by reinforcement or by the occurrence
of small changes in the environment, the actions to be performed by the agents will be

Respuestas, 23 (2) July - December 2018, pp. 53-61, ISSN 0122-820X

Multiagent reinforcement learning using Non-Parametric Approximation

()[]
2τ

NtsKt →

()() ()[] ()tatsK
N

ts t
t
∑
=

=
2

1

2ˆ
τ

τ

τφ

58

6)	 Repeat steps 2-5 until the Q values converge:
This happens when the values remain unchanged
or they are below a predetermined level.

7)	 Obtaining final Q-table of action-states: The
final table of optimal states-actions is fine-tuned
for the selection of the optimal actions by means
of the location of the action that will generate the
maximum value Q in every state.

8)	 Kernel training phase: The table of values is
used Q obtained by the Q-Learning algorithm
to train the kernel, each column of the table
Q represents a state, which is entered as input
and the optimal actions found as outputs of the
system.

Once the kernel has been trained, it will provide
a joint approximate action that the agents will
implement when they are facing unknown states
that had not been explored or learned in the previous
stages of learning.

Results and Discussion

In order to validate the performance of the proposed
method, two Khepera IV mobile robots are used,
whose objective is to generate a trajectory from
an initial point to a goal. The software used was
Matlab, the robots were used in slave mode with a
bluetooth connection at 115200 bauds, the exchange
of information between the robots Khepera and
Matlab was through ASCII code. The task must be
completed in a minimum time avoiding obstacles
and coordinating among them, it is assumed that the
agents have no prior knowledge about the position
and shape of the obstacles present in the environment,
the configuration of the working environment is
shown in figure 2.

Figure 2. Task Configuration

The initial position of the agents is randomly selected

and 50 learning steps are carried out, if this limit is
reached, the experiment is stopped and restarted. As
soon as the agents find the optimal trajectory without
colliding with obstacles or other agents it will be said
that the values of the Q-table have converged, so the
learning stage will be stopped by reinforcement.

In order to complete the assigned cooperative task,
each agent is required to choose one action from the
4 available actions

• Move forward 5 cm.
• Turn around 25° in the direction of the clock.
• Turn around 25° in a counterclockwise direction.
• Don’t move.
The reward function (,)x uρ is given by:

The reward function is designed in such a way that
by assigning the numeric value 1 when the agent
takes the target, the numeric reward of 10 for when
the agent reaches the target prevents agents from
finding suboptimal states motivated by intermediate
rewards.

The convergence of the algorithm is shown in
figure 3. In this figure it is shown that the algorithm
converges after 16 trials, the duration of each trial
depends on the number of steps that the agents
perform before stopping the trial or reaching the
learning objective.

The set of data that will be used as training samples
for the Kernel are taken from the optimal Q-table
generated by the Q-learning algorithm, Table I. Each
column of the Q-table represents a state and the
output of the approximator will be the joint action
that the agents must execute.

In order to compare the performance of the algorithm,
we choose as initial position for the agents, an
unknown state which is not in the Q-table, under
this situation it would not be possible to provide
the optimal actions to the agents, so the kernel will
offer a coordinated suboptimal action for each agent,
example of these situations are shown in figures 4
and 5, where the agents have initial position in states
that are not in the Q-table.

Matlab was through ASCII code. The task must be completed in a minimum time avoiding
obstacles and coordinating among them, it is assumed that the agents have no prior
knowledge about the position and shape of the obstacles present in the environment, the
configuration of the working environment is shown in figure 2.

Figure 2. Task Configuration

The initial position of the agents is randomly selected and 50 learning steps are carried out,
if this limit is reached, the experiment is stopped and restarted. As soon as the agents find
the optimal trajectory without colliding with obstacles or other agents it will be said that the
values of the Q-table have converged, so the learning stage will be stopped by
reinforcement.

In order to complete the assigned cooperative task, each agent is required to choose one
action from the 4 available actions

• Move forward 5 cm.

• Turn around 25° in the direction of the clock.

• Turn around 25° in a counterclockwise direction.

• Don't move.

The reward function (,)x u is given by:

situationother any in 0
position base the target to the takeagents theIf 10

 target. thesagent take theIf 1

1

1

1











k

k

k

r
r
r

The reward function is designed in such a way that by assigning the numeric value 1 when
the agent takes the target, the numeric reward of 10 for when the agent reaches the target
prevents agents from finding suboptimal states motivated by intermediate rewards.

Respuestas, 23 (2) July - December 2018, pp. 53-61, ISSN 0122-820X

David Luviano Cruz, Francesco José García-Luna, Luis Asunción Pérez-Domínguez

59

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Learning trial

A
ct

io
ns

 to
 c

om
pl

et
e

tri
al

Learning convergence for WoLF-PHC algorithm

Figure 3. Convergence of the opposed algorithm

Respuestas, 23 (2) July - December 2018, pp. 53-61, ISSN 0122-820X

Multiagent reinforcement learning using Non-Parametric Approximation

Table I. Q-table with optimal actions

Rewards depending on action

Position Left Right Up Down Y max Best action

Q11 0,4902706 7,130905 7,130905 0,4902706 7,13090502 UP & RIGHT

Q12 3,3002035 9,9684807 2,1309055 5,4902701 9,96848068 RIGHT

Q13 0,4902706 0,4902706 0,4902706 0,4902706 0,49027057 N/A

Q14 7,2929408 13,772154 10,682144 7,2929408 13,7721544 RIGHT

Q15 5,9475735 12,31808 5,6821441 12,29294 12,3180798 RIGHT

Q21 5,4902701 9,9684807 9,9684807 3,3002035 9,96848068 UP & RIGHT

Q22 8,300203 5,5598197 12,0893 8,300203 12,0892996 UP

Q23 7,2929408 13,772154 13,772154 10,559819 13,7721544 UP & RIGHT

Q24 12,29294 15,53604 12,31808 12,29294 15,5360397 RIGHT

Q25 10,947573 7,3180803 7,3180803 13,905507 13,9055071 DOWN

Q31 8,300203 12,0893 4,9684811 5,5598197 12,0892996 RIGHT

Q32 0,4902706 0,4902706 0,4902706 0,4902706 0,49027057 N/A

Q33 12,29294 15,53604 15,53604 8,9055076 15,5360397 UP & RIGHT

Q34 13,905507 18,05877 10,53604 13,905507 18,0587703 RIGHT

Q35 0,4902706 0,4902706 0,4902706 0,4902706 0,49027057 N/A

Q41 10,559819 10,739142 13,772154 7,2929408 13,7721544 UP

Q42 8,9055076 12,341102 15,53604 12,29294 15,5360397 UP

Q43 13,905507 13,916723 18,05877 13,905507 18,0587703 UP

Q44 15,975216 14,036066 21,826641 15,975216 21,8266407 UP

Q45 15,490269 15,490269 15,490269 15,490269 15,4902692 ALL

Q51 12,29294 5,9814957 12,341102 5,9814957 12,3411022 UP

Q52 13,905507 7,4598222 13,916723 10,981495 13,9167228 UP

Q53 15,975216 8,9167232 8,9167232 12,459822 15,9752158 LEFT

Q54 0,4902706 0,4902706 0,4902706 0,4902706 0,49027057 N/A

Q55 23,143842 14,10045 14,10045 14,10045 23,1438419 LEFT

60

Figure 4. First path found by the Kernel starting from an unknown state

Figure 5. Second path found by the Kernel starting from an unknown state

The state vector 1, 2 3 4[, ,]Tx x x x x= and the control
signal 1 2[,]u u u= of agent 1 is shown in Figure 6,
where 1x is the position in the x, 2x is the position
on the y-axis, 3x is the speed on the axis x, 4x is the
speed on the y-axis. 1u is the force applied to the
shaft x, 2u is the force applied to the y-axis.

Figure 6. Status and control signal for agent 1

y (mm)

3000

0
x (mm) 1800

y (mm)

3000

0

x (mm) 1800

The state vector 1, 2 3 4[, ,]Tx x x x x= and the control
signal 1 2[,]u u u= of agent 2 is shown in Figure 7.

Figure 7. Status and control signal for agent 1

Conclusions

A proposal for integration between 2 control
strategies is presented. In a first stage MARL is
used as a means to obtain data and information of
the task and the environment in which the agents are
developed, later these data are used to train a non-
parametric approximator.

The experimental results confirm the reliability. and
robustness of the controller for path planning when
agents face unknown states, overcoming the need to
re-execute the learning algorithm by reinforcement,
which leads to time savings and computational
power.

It should be noted that when using a non-parametric
approximator, the number of weights to be tuned in
the kernel increases as the size of the data available
for training increases, so a balance should be sought
between simplicity and accuracy of the approximator.

In addition, it is necessary to emphasize that the
proposed method uses a model of discrete states of
the system, this is possible due to the quantization of
the states in the environment. The minimum number
of data captured by the algorithm should be sufficient
to describe the dynamics of the system and together
with the design of an appropriate reward function
ensure that there is a local maximum in the return
function. The choice of data captured will depend
on prior knowledge of the problem to be solved. The

0 5 10 15 20 25 30
-5

0

5

10

St
at

es

x1(t)

x2(t)

x3(t)

x4(t)

0 5 10 15 20 25 30
-2

-1

0

1

2

C
on

tro
ls

u1x(t)

u1y (t)

0 5 10 15 20 25 30
-4

-2

0

2

4

6

St
at

es

x

5
(t)

x6(t)
x

7
(t)

x
8
(t)

0 5 10 15 20 25 30
-2

-1

0

1

2

C
on

tro
ls

u

2
x(t)

u
2
y(t)

Respuestas, 23 (2) July - December 2018, pp. 53-61, ISSN 0122-820X

David Luviano Cruz, Francesco José García-Luna, Luis Asunción Pérez-Domínguez

61

natural direction in the study of this topic would be
to look for techniques where multi-agent systems
with continuous states could be dealt with.

Acknowledgements

The authors extend their thanks to the Mexican
Ministry of Public Education for funding this work
through Research Agreement 511-6 / 17-7605.

References

[1] P. Stone, M. Veloso, “Multiagent systems: A
survey from machine learning perspective”,
Autonomous Robots, vol.8, no.3, pp. 345-383,
2000.

[2] 	 M. Wooldridge, An Introduction to Multi Agent
Systems, Baffins Lane, Chichester, England:
John Wiley & Sons. 1992.

[3] 	 L. Busoniu, R. Babuska and B. De Schuttert,
“Multi-agent Reinforcement Learning: An
Overview”, Delf Center for System and
Control, Delf University of Technology,
pp. 183-221, 2010.

[4] 	 J.M. Vidal, “Learning in multiagent systems:
An introduction from a game-theoretic
perspective”, In: Alonso E., Kudenko D.,
Kazakov D. (eds) Adaptive Agents and
Multi-Agent Systems. Lecture Notes in
Computer Science, vol. 2636. Springer, Berlin,
Heidelberg, pp. 202-215, 2003.

[5] 	 R. Postoyan, L. Busoniu, D. Nesic and J.
Daafouz, “Stability Analysis of Discrete-
Time Infinite-Horizon Optimal Control with
Discounted Cost”. IEEE Transactions on
Automatic Control, vol. 62, no. 6, pp. 2736–
2749, 2017

[6] 	 C. Watkins, P. Dayan, “Q Learning:
Technical Note”, Machine Learning, vol.8,
pp. 279-292, 1992.

[7] 	 C. Boutilier, “Planning Learning and
Coordination in Multiagent Decision

Processes”, In Proceedings of the Sixth
Conference on Theoretical Aspects of
Rationality and Knowledge (TARK96), 1996,
pp. 195-202, 1996.

[8] 	 Y. Ishiwaka, T. Sato and Y. Kakazu, “An
approach to the pursuit problem on a
heterogeneous multiagent system using
reinforcement learning”, Robotics and
Autonomous Systems, vol. 43, no. 4, pp. 245-
256, 2003.

[9]	 A. Nadaraya, “On Estimating Regression”,
Theory of Probability and its Applications,
vol. 9, no.1, pp. 141-142, 1964.

Respuestas, 23 (2) July - December 2018, pp. 53-61, ISSN 0122-820X

Multiagent reinforcement learning using Non-Parametric Approximation

