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This paper presents a hybrid control proposal for multi-agent systems, where the advantages of the 
reinforcement learning and nonparametric functions are exploited. A modified version of the Q-learning 
algorithm is used which will provide data training for a Kernel, this approach will provide a sub optimal set 
of actions to be used by the agents. The proposed algorithm is experimentally tested in a path generation task 
in an unknown environment for mobile robots.
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En este artículo se presenta una propuesta híbrida de algoritmo de control para sistemas multiagentes, en 
donde se aprovechan las ventajas del aprendizaje por reforzamiento y de las funciones de aproximación 
no paramétricas. Se utiliza una versión modificada del algoritmo Q-learning la cual proveerá de datos de 
entrenamiento para un Kernel, el cual ofrecerá una aproximación sub-óptima de acciones a realizar por los 
agentes. El algoritmo propuesto es probado experimentalmente en una tarea de generación de trayectoria en 
un entorno desconocido para robot móviles.
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Introduction

There are Research related to multiagent systems 
(MAS) is an emerging subfield of distributed artificial 
intelligence, which aims to provide principles for 
building complex systems through the integration of 
multiple agents. 

There are features in MAS that distinguish it from 

a single-agent control system. First the agents are 
considered partially autonomous, this is due to the 
fact that the agents do not have available all the global 
information and therefore of the work environment, 
reason why they can only have access to a limited 
information, second in the MAS an individual agent 
cannot decide an optimal action only using his local 
knowledge [1].
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where a trajectory is generated from a starting point to 
an end point respecting certain restrictions imposed 
on movement, such as obstacles, delimitation of the 
trajectory area. 

The problems addressed by RL are generally limited 
to problems with discrete states and with a finite 
number of actions available to agents. This is due 
to the so-called curse of dimensionality, which is 
the exponential growth of state-action pairs to learn 
as the number of states and actions increase in the 
problem, leading to an increase in computation time 
and the amount of memory needed to store the data 
associated with the algorithm [4].

Therefore, it is necessary to incorporate an additional 
strategy to learning by reinforcement, which offers 
the opportunity to generalize the results obtained. 
There are two approaches to be used to approximate 
action-state values in RL, one of them is the 
parametric approximators, where the functional 
form of the mapping and the number of parameters 
are designed beforehand and do not depend on 
the data [5], on the other hand, in non-parametric 
approximators, the number of parameters and the 
shape of the approximator are derived as a function 
of the available data.

The article proposes a methodology that takes 
advantage of the RL along with a non-parametric 
approximator in the form of Kernel, the algorithm is 
integrated by two stages of learning, the first will use 
the Q-learning algorithm, where the model of the task 
is known, at this stage the agent will explore the task 
environment in order to collect information states-
actions, that is to say which is the optimal action to 
take each one of the explored states, in the second 
stage, the information obtained by the algorithm of 
RL will be used to adjust the weights of the Kernel, 
which will offer us the optimal actions to take by the 
agent (robot) in states that were not explored in the 
first stage of learning.

The proposed algorithm is validated by means 
of simulation, where the generation of optimal 
trajectories for mobile robots is sought under a 
cooperative task scheme.
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Multi-agent systems have found applications in a 
wide variety of fields such as robot teams playing 
soccer, distributed control, unmanned aerial vehicles, 
training control, resource and traffic management, 
systems support, data mining, design engineering, 
intelligent search, medical diagnostics, product 
delivery, among others. The agents that make up a 
MAS have to deal with environments that can be 
static or dynamic, deterministic (an action has a 
single effect) or non-deterministic, discrete (there is 
a finite number of actions and states) or continuous 
[2].

For example, most existing artificial intelligence 
techniques for individual agents have been developed 
in static media as they are easier to handle and allow 
for rigorous mathematical treatment. In MAS, with 
the mere presence of multiple agents they make a 
static environment appear as dynamic from the point 
of view of other agents.

Although traditional control approaches seek to 
equip agents with MAS with pre-programmed or 
pre-designed behaviors, agents often need to learn 
new behaviors online so that MAS performance 
gradually improves. This is because the complexity 
of the working environment in which the agents 
operate and the tasks assigned to them make an a 
priori design of the control laws difficult or even 
impossible.

An agent that learns through Reinforcement Learning 
(RL) acquires knowledge through interaction with the 
dynamic environment where it performs its assigned 
task. In each step of time, the agent perceives the 
state of the environment and executes a determined 
action, which generates that the environment 
transitions to a new state. A reward signal scale 
evaluates the quality of each state transition so the 
agent must maximize the reward accumulated during 
the interaction with the environment, it is important 
to mention, the agents are not told what action to 
take, so they must explore the environment to find 
the actions that provide a greater reward in the long 
term [3].

One area where learning by reinforcement has been 
successful is trajectory planning for mobile robots, 
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Materials and methods

Reinforcement learning for multi-agent Systems

The generalization of Markov’s decision-making 
process in learning by reinforcement in multi-
agent systems (MARL) is the so-called stochastic 
game [7]. The stochastic game is defined as a tuple 
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where  n   is the number of agents,  S   is the finite 
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Together they form the policy of joint action  .π   

Since the reward signals  1, +tir  of the agents depends 
on a joint action carried out by all the agents, their 
return  R   for a multi-agent system depends on the 
joint policy:
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The function Q   of each agent depends on joint 
action and joint action policy:

In entirely cooperative stochastic games, the 
reward functions are the same for all agents  

nρρρ === ...21   which implies that the returns  R   

are also the same  πππ
nRRR === ...21   Therefore, all 

agents have the same objective which is to maximize 
the common return.

The optimal function  Q    is defined as  ∗Q  
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Which satisfies Bellman’s optimization equation.:

Once   ∗Q  is available, an optimal stock policy can 
be calculated by choosing in each state a stock with 
the highest value  Q optimal:
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A generalized approach used to solve the problem 
of coordination in MAS is to make sure that any 
decision situation is solved in the same way by all 
the agents using some type of negotiation. In our 
proposal, implicit coordination is used, where agents 
learn to choose actions in a coordinated way through 
trial and error.

Q-learning algorithm

There are a large number of algorithms available 
for learning by reinforcement, one of the most 
popular methods in RL is the Q-Learning algorithm, 
which uses an iterative approach procedure [8]. 
Q-Learning begins with an arbitrary function Q , 

observe transitions ( )11,,, ++ tttt rsas   and after each 
transition updates the function Q   with:
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The term in square brackets is called a temporal 
difference. The learning parameter ( ]1,0∈α   can be 
variant in time and usually decreases with time.

The sequence  tQ   converges on ∗Q   under the 
following conditions [8]:

•	 Different function values  Q   are saved and 
updated for each action-state.

•	 The summation α∑∞
=0t   is finite.  

•	 Asymptotically all action-state pairs are visited 
infinitely.  

The third point can be satisfied if agents are kept 
trying all actions in all states that have non-zero 
probability of happening. This requirement is called 
exploration, which can be done in several ways, one 
of them is choosing in each step a random action 
with probability.  ( )1,0∈ε   and choosing a greedy 
action with probability  ,1−ε   this way we get a 
greedy exploration.

Learning by means of Non-Parametric Kernel 
approximator

The algorithms that use RL obtain a policy of optimal 
actions from the optimal values obtained during the 
learning process, most of these methods are based 
on discrete considerations of the environment and a 
limited number of states, actions and agents in order 
to avoid the problem of dimensionality. 

Since most real applications have a large number 
of states and the Q-Learning algorithm is based on 
search tables, the non-parametric approximation 
method based on Kernel is used to approximate the 
unknown states that are not visited when the RL 
algorithm is carried out, also to make generalizations 
when the environment has been slightly modified, 
in both cases avoiding the need to recalculate the 
optimal policies.

In the approach phase we assume that we have a 

collection of data  ts   coming from the observation 
of the agents, taken in the interval  [ ],, 21 ττ∈t   these 

data come from the model: ( ) εφ +=+ tt ss 1ˆ .

where  ( )tsφ   is an unknown soft response curve 
and  ε   is the mistake. The goal is to find an estimate 

of Kernel  φ̂   at some point in a pre-specified time .t   
The Kernel is simply a weighted average of all data 
points:
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A conceptually simple representation of the sequence 

of weights  tW  , is by describing the shape of the 
weight function by means of a density function with 
a scaling parameter that has the function to adjust 
the size and shape of the weights near the data points  

.ts   It is common to refer to this shaping function 
as a kernel  [ ]zK . The kernel is a real, continuous, 
dimensioned and symmetrical function which can be 
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type of random variables, the summation implied by 
the kernel function is equivalent to a Monte Carlo 
integration:

Therefore, the regression proposed by Nadaraya 
used in the kernel can be replaced by the regression 
proposed by Priestley-Chao [9], which is defined as:   

						      (1)

Given the above the expression (1) is used to model 
the unknown or unexplored states of the environment. 
One possible way is to design an expanded kernel 
function in order to encompass a larger amount of 
data by means of a full amplitude:

where  maxσ   is chosen on the basis of the total 

number of data obtained, e.g.  

 
 

       tatsK
N

ts t
t




2

1

2ˆ




             (1) 

 
Given the above the expression (1) is used to model the unknown or unexplored states of 
the environment. One possible way is to design an expanded kernel function in order to 
encompass a larger amount of data by means of a full amplitude: 

 
  2ln22max   

 
where  max   is chosen on the basis of the total number of data obtained, e.g.   ,10max

N   
the amplitude parameter of the Gaussian function is given by: 

 

 2ln220
N

  

 
Where the total data available is.  
 
Proposed learning algorithm 
Proposed learning flow is show in the figure 1. 

 

Figure 1. Proposed 
learning flow 

 
 
 
 
 
 
 
 
 
 
 
 
 
At every discreet step of time t , the states where the agents are located are observed and 
these are referred to a table of states-actions called Q -tabla. The Q-learning algorithm is 

used to obtain optimal actions, from the data of  Q   which is obtained at the end of the 
convergence of the algorithm. 
 
When the states where the agents are located are not available in the Q-table, either because 
they were not explored during the learning algorithm by reinforcement or by the occurrence 
of small changes in the environment, the actions to be performed by the agents will be 

   the 
amplitude parameter of the Gaussian function is 
given by:

Where the total data available is. 

Proposed learning algorithm

Proposed learning flow is show in the figure 1.

Figure 1. Proposed learning flow

At every discreet step of time t , the states where 
the agents are located are observed and these are 
referred to a table of states-actions called Q -tabla. 
The Q-learning algorithm is used to obtain optimal 

actions, from the data of  ∗Q   which is obtained at the 
end of the convergence of the algorithm.

When the states where the agents are located are 
not available in the Q-table, either because they 
were not explored during the learning algorithm by 
reinforcement or by the occurrence of small changes 
in the environment, the actions to be performed 
by the agents will be approximate Kernel. The 
new approach will be sent to the agents in order to 
continue the task entrusted.

The previously trained approximator generates as 
output a sub-optimal action for each agent in the 
environment, thus avoiding to run the RL algorithm 
again when the agents face an unknown state.

The proposed method can be listed in the following 
steps:

1)	 The initial states of each training cycle of the RL 
Q-learning algorithm are captured: The current 
state of the agents’ state with respect to the 
environment is captured through sensors.

2)	 Limit the number of captured states: The 
limitation of captured states reduces the set of 
states agents require to complete the task which 
saves time and computing power.

3)	 Establish the actions available to the agents: At 
each moment the agents are required to carry 
out an action with a degree of coordination, 
therefore, it is necessary to select in advance 
the most reliable actions to be carried out by the 
agents, with the aim of keeping the space for 
actions minimized and avoiding dimensionality 
problems.

4)	 Estimate the Q-state-action values of each 
agent: The numerical reward of each action is 
calculated and given to the agent after a joint 
action is performed, the values obtained are 
saved in a search table called Q-table.

5)	 Repeat steps 2-4 until the agents reach the 
target: The training cycle ends if the agents 
reach the final objective or if an established limit 
of iterations is reached.
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6)	 Repeat steps 2-5 until the Q values converge: 
This happens when the values remain unchanged 
or they are below a predetermined level.

7)	 Obtaining final Q-table of action-states: The 
final table of optimal states-actions is fine-tuned 
for the selection of the optimal actions by means 
of the location of the action that will generate the 
maximum value Q   in every state.

8)	 Kernel training phase: The table of values is 
used  Q   obtained by the Q-Learning algorithm 
to train the kernel, each column of the table  
Q   represents a state, which is entered as input 
and the optimal actions found as outputs of the 
system.

Once the kernel has been trained, it will provide 
a joint approximate action that the agents will 
implement when they are facing unknown states 
that had not been explored or learned in the previous 
stages of learning.

Results and Discussion 

In order to validate the performance of the proposed 
method, two Khepera IV mobile robots are used, 
whose objective is to generate a trajectory from 
an initial point to a goal. The software used was 
Matlab, the robots were used in slave mode with a 
bluetooth connection at 115200 bauds, the exchange 
of information between the robots Khepera and 
Matlab was through ASCII code. The task must be 
completed in a minimum time avoiding obstacles 
and coordinating among them, it is assumed that the 
agents have no prior knowledge about the position 
and shape of the obstacles present in the environment, 
the configuration of the working environment is 
shown in figure 2.

Figure 2. Task Configuration

The initial position of the agents is randomly selected 

and 50 learning steps are carried out, if this limit is 
reached, the experiment is stopped and restarted. As 
soon as the agents find the optimal trajectory without 
colliding with obstacles or other agents it will be said 
that the values of the Q-table have converged, so the 
learning stage will be stopped by reinforcement.

In order to complete the assigned cooperative task, 
each agent is required to choose one action from the 
4 available actions

• Move forward 5 cm.
• Turn around 25° in the direction of the clock.
• Turn around 25° in a counterclockwise direction.
• Don’t move.
The reward function ( , )x uρ  is given by:

The reward function is designed in such a way that 
by assigning the numeric value 1 when the agent 
takes the target, the numeric reward of 10 for when 
the agent reaches the target prevents agents from 
finding suboptimal states motivated by intermediate 
rewards.

The convergence of the algorithm is shown in 
figure 3. In this figure it is shown that the algorithm 
converges after 16 trials, the duration of each trial 
depends on the number of steps that the agents 
perform before stopping the trial or reaching the 
learning objective.

The set of data that will be used as training samples 
for the Kernel are taken from the optimal Q-table 
generated by the Q-learning algorithm, Table I. Each 
column of the Q-table represents a state and the 
output of the approximator will be the joint action 
that the agents must execute.

In order to compare the performance of the algorithm, 
we choose as initial position for the agents, an 
unknown state which is not in the Q-table, under 
this situation it would not be possible to provide 
the optimal actions to the agents, so the kernel will 
offer a coordinated suboptimal action for each agent, 
example of these situations are shown in figures 4 
and 5, where the agents have initial position in states 
that are not in the Q-table.
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• Turn around 25° in a counterclockwise direction. 

• Don't move. 

The reward function ( , )x u  is given by: 
 

situationother any in    0
position base  the target to the takeagents  theIf 10

 target. thesagent take  theIf 1

1

1

1











k

k

k

r
r
r

 

The reward function is designed in such a way that by assigning the numeric value 1 when 
the agent takes the target, the numeric reward of 10 for when the agent reaches the target 
prevents agents from finding suboptimal states motivated by intermediate rewards. 
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Figure 3. Convergence of the opposed algorithm
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Table I. Q-table with optimal actions

Rewards depending on action

Position Left Right Up Down Y max Best action

Q11 0,4902706 7,130905 7,130905 0,4902706 7,13090502 UP & RIGHT

Q12 3,3002035 9,9684807 2,1309055 5,4902701 9,96848068 RIGHT

Q13 0,4902706 0,4902706 0,4902706 0,4902706 0,49027057 N/A

Q14 7,2929408 13,772154 10,682144 7,2929408 13,7721544 RIGHT

Q15 5,9475735 12,31808 5,6821441 12,29294 12,3180798 RIGHT

Q21 5,4902701 9,9684807 9,9684807 3,3002035 9,96848068 UP & RIGHT

Q22 8,300203 5,5598197 12,0893 8,300203 12,0892996 UP

Q23 7,2929408 13,772154 13,772154 10,559819 13,7721544 UP & RIGHT

Q24 12,29294 15,53604 12,31808 12,29294 15,5360397 RIGHT

Q25 10,947573 7,3180803 7,3180803 13,905507 13,9055071 DOWN

Q31 8,300203 12,0893 4,9684811 5,5598197 12,0892996 RIGHT

Q32 0,4902706 0,4902706 0,4902706 0,4902706 0,49027057 N/A

Q33 12,29294 15,53604 15,53604 8,9055076 15,5360397 UP & RIGHT

Q34 13,905507 18,05877 10,53604 13,905507 18,0587703 RIGHT

Q35 0,4902706 0,4902706 0,4902706 0,4902706 0,49027057 N/A

Q41 10,559819 10,739142 13,772154 7,2929408 13,7721544 UP

Q42 8,9055076 12,341102 15,53604 12,29294 15,5360397 UP

Q43 13,905507 13,916723 18,05877 13,905507 18,0587703 UP

Q44 15,975216 14,036066 21,826641 15,975216 21,8266407 UP

Q45 15,490269 15,490269 15,490269 15,490269 15,4902692 ALL

Q51 12,29294 5,9814957 12,341102 5,9814957 12,3411022 UP

Q52 13,905507 7,4598222 13,916723 10,981495 13,9167228 UP

Q53 15,975216 8,9167232 8,9167232 12,459822 15,9752158 LEFT

Q54 0,4902706 0,4902706 0,4902706 0,4902706 0,49027057 N/A

Q55 23,143842 14,10045 14,10045 14,10045 23,1438419 LEFT
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Figure 4. First path found by the Kernel starting from an unknown state

Figure 5. Second path found by the Kernel starting from an unknown state

The state vector 1, 2 3 4[ , , ]Tx x x x x=  and the control 
signal 1 2[ , ]u u u=  of agent 1 is shown in Figure 6, 
where 1x  is the position in the x, 2x  is the position 
on the y-axis, 3x  is the speed on the axis x, 4x  is the 
speed on the y-axis. 1u  is the force applied to the 
shaft x, 2u  is the force applied to the y-axis.

Figure 6. Status and control signal for agent 1
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The state vector 1, 2 3 4[ , , ]Tx x x x x=  and the control 
signal 1 2[ , ]u u u=  of agent 2 is shown in Figure 7.

Figure 7. Status and control signal for agent 1

Conclusions

A proposal for integration between 2 control 
strategies is presented. In a first stage MARL is 
used as a means to obtain data and information of 
the task and the environment in which the agents are 
developed, later these data are used to train a non-
parametric approximator.  

The experimental results confirm the reliability. and 
robustness of the controller for path planning when 
agents face unknown states, overcoming the need to 
re-execute the learning algorithm by reinforcement, 
which leads to time savings and computational 
power.

It should be noted that when using a non-parametric 
approximator, the number of weights to be tuned in 
the kernel increases as the size of the data available 
for training increases, so a balance should be sought 
between simplicity and accuracy of the approximator.

In addition, it is necessary to emphasize that the 
proposed method uses a model of discrete states of 
the system, this is possible due to the quantization of 
the states in the environment. The minimum number 
of data captured by the algorithm should be sufficient 
to describe the dynamics of the system and together 
with the design of an appropriate reward function 
ensure that there is a local maximum in the return 
function. The choice of data captured will depend 
on prior knowledge of the problem to be solved. The 
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natural direction in the study of this topic would be 
to look for techniques where multi-agent systems 
with continuous states could be dealt with.
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