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ABSTRACT
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The prostate exam is an early detection tool to prevent prostate cancer and the main diagnostic tools 
for obtaining signs are generally invasive. This article tries chromatographic signals from the urine of 
prostate cancer patients and control patients as a non-invasive examination proposal. For this purpose, 
methodologically, urine samples are taken, digitized in chromatograms, treated with mathematical 
techniques and classified. The mathematical techniques are time normalization, dead time elimination, 
baseline correction, noise elimination, and peak alignment. Classification techniques analyze energy, in the 
domain of time and frequency, and the main components in sedimentation graphs and scores. As a result, the 
chromatographic signal is characterized and identifies the characteristic curve that represents the signal of 
prostate cancer patients and control patients. The data structure shows a cluster distribution of 88.88% of the 
vectors for the control patients. In the case of prostate cancer patients, the distribution of data is in clusters 
around the area defined by control patients. This characterization demarcates signal classification regions to 
diagnose possible prostate cancer patients, validating the relationship between the chromatographic signal 
and cancer.
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El examen de próstata es una herramienta de detección temprana para prevenir el cáncer de próstata y los 
principales instrumentos diagnósticos para obtener indicios son generalmente invasivos. Este artículo analiza 
señales cromatográficas provenientes de la orina de pacientes con cáncer de próstata y pacientes control 
como propuesta de examen no invasivo. Para tal efecto, metodológicamente, se toman muestras de orina, se 
digitalizan en cromatogramas, se tratan con técnicas matemáticas y se clasifican. Las técnicas matemáticas 
son normalización de tiempo, eliminación del tiempo muerto, corrección de línea base, eliminación de ruido 
y alineación de picos. Las técnicas de clasificación analizan la energía, en el dominio del tiempo y frecuencia, 
y los componentes principales en gráficas de sedimentación y puntuaciones. Como resultado se caracteriza 
la señal cromatográfica e identifica la curva característica que representa la señal de los pacientes con cáncer 
de próstata y pacientes control. La estructura de los datos muestra una distribución de conglomerado, del 
88,88 % de los vectores, para los pacientes control. Para el caso de los pacientes con cáncer de próstata la 
distribución de los datos es en conglomerados alrededor de la zona delimitada por los pacientes control. Esta 
caracterización demarca regiones de clasificación de señales para diagnosticar posibles pacientes con cáncer 
de próstata, validando la relación existente entre la señal cromatográfica y el cáncer.
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Introduction 

Prostate cancer is one of the cancers that most affects 
the male gender today; more than 5% of every million 
people are affected by this disease; In addition, the 
early detection tools available to prevent it and the 
main diagnostic instruments to obtain evidence are 
generally invasive, with the rectal examination and 
serum concentration of the specifi c prostate antigen 
being the best known. In this sense, [1] identifi ed 
factors that may be related to the non-performance of 
the exam such as: fear of cancer, shame, discomfort, 
pain, low educational level, disinformation of 
the exam, distrust of medical professionals and 
concern that the rectal touch may affect masculinity; 
factors that are expected to be mitigated with this 
research, taking advantage of the increasing use of 
new technologies, where applications have been 
developed to improve health conditions worldwide 
[2], seeking to make the procedures as effective and 
as invasive as possible.. 

Computer-assisted diagnostic systems, which use 
signal processing techniques, have been widely used 
to diagnose diseases such as upper limb sarcopenia 
[3], cardiovascular diseases [4], [5], Parkinson 
[6] - [8], to mention a few. Likewise, prostate 
cancer has also been tried to diagnose using image 
processing techniques from the chemical treatment 
of a biopsy [9], [10]; others have used machine 
learning techniques to improve the validity of the 
diagnosis [11], [12], however, the method remains 
invasive in obtaining the sample for the analysis of 
the information contained therein. 

However, it is possible to obtain information on 
prostate cancer non-invasively through chromatog-
raphy, a procedure defi ned as the method by which 
chemical components are separated from a sample, 
which is represented by a one-dimensional signal 
with which it is possible to analyze delay, energy 
or concentration times; allowing the qualitative and 
quantitative identifi cation of chemical components 
based on their distribution for characterization [13]. 

As presented, this article tries urine samples from a 
chromatographic process to obtain one-dimensional 
signals, analyzes the differentiating characteristics 

by applying signal processing techniques and 
identifi es whether the signal corresponds to a patient 
with prostate cancer or a control patient (no prostate 
cancer). 

Processing techniques for the characterization of 
chromatographic signals include time normalization, 
dead time elimination, baseline correction, noise 
elimination, signal alignment, energy analysis for 
feature extraction and principal component analysis 
for classifi cation.

This document presents the materials and methods, 
describing the methodology implemented and 
exposes the results obtained with their respective 
analyses. 

Materials and methods

Figure 1 sshows the research methodology 
implemented in the sampling stages, database 
consolidation, signal conditioning using 
mathematical processing techniques and 
chromatogram classifi cation.

The sampling includes the search for patients 
diagnosed with prostate cancer and control patients 
and the chemical preparation of the sample. The 
purpose of this stage is to have the appropriate 
urine sample of each patient, ready to enter the 
chromatogram, a process that occupies 61% of the 
total time dedicated to this procedure. Therefore, an 
adequate sample preparation is a determining factor 

Figure 1. Research methodology
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in the correct performance of a chromatography, 
since it guarantees the integrity of the results 
and eliminates the contaminants that affect the 
chromatogram [14]. 

The consolidation of the database contemplates 
the digitization of the one-dimensional signals in 
text fi les, one per patient, whose data correspond 
to the intensities of the sample in millivolts. Each 
patient has an associated chromatogram, which 
is constructed iteratively until the appropriate 
resolution is obtained [13], [15]. 

Figure 2 graphically depicts the text fi le of a 
chromatogram with its attributes, where the x-axis 
constitutes the time in minutes and the axis and the 
intensity of the sample in millivolts. The recording 
time in each chromatogram is defi ned in seven 
minutes.

The attributes of the chromatogram are: peak height 
(hp) which is the portion of a component defi ned by its 
height and width at baseline; the dead time(tm) which 
is the time to register the fi rst component; retention 
time (tr) considered as the time elapsed between the 
start of the sample and the appearance of peaks, used 
to identify and characterize signals; the peak - valley 
relationship(hp/hv) used as a classifi cation criterion 
when it is not possible to separate two consecutive 
peaks in the baseline, where hv is the height at the 
lowest point of the curve that separates the minor 
and major peaks above the extrapolated baseline; 
and fi nally, the peak width at half the height (W(h/2)) 
and the peak area (A), parameters used to describe 
signal characteristics in a given context [15]. 

The signal conditioning adapts the data, through 

mathematical processing techniques, so that the 
characteristics of the signal can be correctly classifi ed 
and validated; To do this, it uses processes such as: 
normalization of time, elimination of dead time, 
correction of baseline, elimination of high and low 
frequency noise, and alignment of peaks [16] - [18]. 

The chromatogram classifi cation extracts the energy 
of each peak, in the time and frequency domain, to 
form characteristic vectors for each signal, which are 
used to classify the signals with principal component 
analysis. This last analysis is commonly used to 
validate if the chosen characteristics of a signal, in 
this case, the energy, are correct for classifi cation 
[19] - [22].

Results and Discussion 

This section is structured based on the methodology 
of Figure 1, presents the results of the processing 
of chromatographic signals from urine samples and 
exposes its analysis. 

Sampling

 Chromatographic signals were taken at the Quality 
Control Laboratory of the University of Pamplona, 
based on the analysis of urine samples. Eighteen 
shots were taken, nine corresponding to prostate 
cancer patients and nine control patients. 

Database Consolidation 

Eighteen text fi les were obtained in the .txt format, 
one fi le for each patient, which constitute the database 
of chromatographic signals from urine samples. 
Figure 3 graphically shows the chromatogram of a 
patient with prostate cancer and a control patient.

Figure 2. Chromatogram and its attributes

Figure 3. Graphical representation of the chromatogram digitization
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The control patient records a prominent peak in 
the chromatogram, while the patient with prostate 
cancer differs by presenting two prominent peaks. 
That is, there is an indication in the chromatographic 
signal that relates a possible prostate cancer.

Signal Conditioning

Figure 4 shows the order of the processes used 
for signal conditioning. The processes are time 
normalization, dead time elimination, baseline 
correction, low and high-frequency noise elimination, 
and peak alignment. Each process implements 
threads sequentially represented horizontally. Next, 
each process is described.

Time normalization

It measures the time it takes to generate the 
chromatogram to set it as a limit and generates a 
vector between zero and the measured value, whose 
resolution depends on the number of samples in 
each chromatogram, to correlate the intensity of 
the sample with a unique retention time. For this 
project, the normalized time was 7.0 minutes per 
chromatogram. 

Downtime Elimination

Determine the time that the chromatogram 
information contains, identifying the instant at which 
the fi rst valley of the fi rst peak and the second valley 
of the last peak of the signal appear. The application 

Figure 4. Mathematical techniques for signal conditioning

of this process to the project chromatograms 
obtained a minimum signal time of 2.3 minutes and 
a maximum signal time of 3.0 minutes. For this 
reason, the maximum signal time of 3.0 minutes is 
chosen, to avoid the loss of information. 

Baseline Correction

Corrects errors in the signal offset concerning the 
axis of zeros for the correct reading of the intensities 
of the sample. For this, an algorithm is applied 
that softens the signal using a weighted moving 
average fi lter using (1), identifi es the valleys using 
the criterion of the second derivative using (2) to 
form a vector with these values, interpolates a curve 

between two Consecutive valleys for the estimation 
of the baseline between them, using a second-order 
spline approximation by (3) and, subtracts the values 
of the peak baseline to correct the signal by (4).

Where: 

yi is the present value of the signal 

yi-1 is the past value of the signal 

ci is the weighting factor 

n is the maximum number of samples
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Where: 

Y”is the second derivative of the sample yi 

yi is the present value of the signal 

yi+1 is the future value of the signal 

yi+2 is the future value of yi+1

Where: 

p(v) is the set of quadratic polynomials of the 
baseline of each peak 

pi (v) is the quadratic polynomial of the single peak 
baseline 

vi is each valley identifi ed to the right of the peak 

vi-1 is each valley identifi ed to the left of the peak

Where: 

yi is the present value of the signal 

pi (v) is the quadratic polynomial of the peak baseline 

Figure 5 shows the graphic representations of the 
original signal (blue color) and the signal with the 
corrected baseline (orange color). The baseline 
correction process does not alter the chromatogram 
peaks, evidencing the proper functioning of the 
algorithm.

Where: 

Sj is the signal softened 

yj is the present value of the original signal 

yj-1 is the last value of the original signal 

yj+1 is the future value of the original signal

Figure 5. Graphical representation of baseline correction

Low frequency noise elimination

The data smoothing technique is used that helps 
reveal characteristics and components of the signal 
that can be hidden by noise, making it diffi cult to 
calculate parameters such as areas and heights 
[23]. In this process the algorithms are compared 
considering the signal to noise ratio. 

The first algorithm implemented is rectangular 
smooth or boxcar which is an algorithm without 
weighted smoothing replaces each point in the signal 
with the average of m adjacent points, where m is 
a positive and odd integer so that the coeffi cients 
balance x of the peaks and other characteristics in the 
smoothed signal. This project defi nes m=3 resulting 
(5).
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Respuestas, 24 (1) January - April 2019, pp. 74-83, ISSN 0122-820X - E ISSN: 2422-5053



79

Another algorithm used is the triangular smooth that 
implements a weighted smoothing function. For this 
project it is defi ned m=5 resulting (6).

In both cases, the integer in the denominator is the 
sum of the coeffi cients in the numerator, which 
results in a smooth unit gain that has no effect on the 
signal where it is a straight line and that preserves 
the area of the peak. 

The pseud Gaussian o and the w width are also used, 
which iterate three and four times the rectangular 
smooth of three points, respectively. 

Table I shows the signal to noise ratio for the 
smoothing algorithms applied, where it is possible 
to conclude that the best results were obtained by 
applying four passes of a rectangular smooth three-
point.

Figure 6 shows the result of applying the w width 
algorithm, which eliminates the signal jumps, 
contributing to the identifi cation of peaks and valleys 
for the calculation of the area of the peaks, in the 
energy analysis.

values, complete the vector with the calculated 
average data, and shift the data to compensate for the 
fi lter delay. With the application of the fi lter, the 
signal to noise ratio of the smoothed signal is 
improved by 5.14% for the chromatograms of the 
control patients and by 6.09% for the patients with 
prostate cancer. 
Peak alignment
In the digitized signal of the chromatogram, 
misalignment and shifting of the data are 
common due to calibration errors of the 
instruments or of the environment where the 
procedure is performed. For this reason, the icoshift 
algorithm developed by [24] is implemented, 
consisting of three parts: defi nition of intervals, 
maximization of the cross-correlation of each interval 
by a Fast Fourier Transform (FFT) engine and 
reconstruction of the signal. This algorithm takes a 
reference signal and aligns other signals according to 
the peaks marked as representative of it, performing 
the process iteratively until the alignment of all the 
peaks is achieved. This procedure provides value in 
the construction of the characteristics matrix for the 
analysis of main components. 
Figure 7 graphically depicts the effect on 
chromatographic signals when applying an iteration 
with the icoshift algorithm. The fi gure on the left 
shows the non-aligned chromatograms and the fi 
gure on the right shows the aligned chromatograms; 
this is done in order to have the representative 
peaks of each component at the same retention time 
(location).

Signal type 
Improvement of the signal to noise ratio 

Rectangular Triangular Pseudo - Gaussian w -width 
Control patients 32,33 % 32,47 % 32,48 % 32,53 % 

Patients with prostate cancer 51,22 % 51,27 % 51,32 % 51,46 % 

Table I. Signal to noise relationship by applying softening algorithms

Figure 6. Graphical representation of applying the w width algorithm

High frequency noise elimination 

Analyze the area of interest in the frequency domain. 
Design a high-pass low pass filter, average the filter 

Figure 7. Graphical representation of applying the icoshift algorithm

Chromatogram Classifi cation
Figure 8 shows the order of the processes used for the 
classifi cation of chromatograms. The processes are 
energy analysis and principal component analysis. 
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Each process implements threads sequentially 
represented horizontally. Next, each process is 
described.

Energy analysis
This process improves the resolution and symmetry of 
the peaks, identifi es the peaks and valleys, delimits 
the area of each peak, calculates its energy and 
builds the characteristic matrix. 
The sharpening technique improves the resolution 
by (7) and the symmetry by (8) and; it contributes 
to the precision of the measured areas to identify the 
peaks and valleys and, to delimit the area of each 
peak with the perpendicular drop method.

Where: 

Rj is the signal with the improved resolution 

yj is the original signal 

y’’ is the second derivative of the original signal 

y’’’’ is the fourth derivative of the original signal 

k1, k2 are weighting factors of the second and fourth 
derivative respectively

Where: 

Sj is the signal with the improved symmetry 

yj is the original signal 

y’ is the fi rst derivative of the original signal 

k1 It is a weighting factor 

The energy of each peak is calculated using (9), 
where the summation limits are the data between 
the beginning and end valleys of each peak. This 
calculation is performed with each chromatogram in 

Figure 8. Mathematical chromatogram classifi cation techniques

the time domain, in the frequency domain applying 
FFT and, applying the Discrete Cosine Transform 
(DCT).

Where: 

Ep is the energy of each peak 

p=1,2,3…n is the energy of each peak 

yi

2 
is the intensity of the sample squared

vi is the valley to the left of each peak 

vi+1 is the valley to the right of each peak 

As a result, three characteristic matrices are obtained, 
one for each analysis, formed by the energy of each 
peak respecting its position. In the case of absence 
of component, the position in the feature vector is 
completed with zero. 

Principal component analysis

It uses a correlation algorithm between variables 
that uses statistical methods to describe a set of 
data in terms of new uncorrelated variables, 
called components, by the linear combination of 
the original variables seeking to reduce the 
dimensionality of the data [25]. 

Figure 9 shows the analysis of main components in 
a sedimentation plot from the energy data calculated 
in the time domain, with a unique characteristic 
curve, whose classifi cation does not show overlap 
between patients. The main components 1 and 2 are 
those that contain the most information of the 
characteristic chromatograms, followed by 
component 3.

Analysis of energy and major components in chromatographic signals for the diagnosis of prostate cancer
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Figure 10 shows the analysis of main components in 
a sedimentation plot from the energy data calculated 
in the frequency domain, FFT and DCT, which did 
not show a single characteristic curve, showing 
overlap between patients in their classifi cation.

Figure 11 shows another alternative for analyzing 
the data calculated in the time domain using the 

Figure 9. Sedimentation chart of main components - Energy analysis in the time domain

score graph, with the main components 1 and 2 
as axes, with a conglomeration of 88.88% for the 
control patients. Patients with prostate cancer are 
presented as isolated values. This analysis shows 
that control and cancer patients have differences in 
their chromatograms, evidencing the relationship 
between signals and prostate cancer.

Figure 10. Sedimentation graph of main components - Energy analysis in the frequency domain

Figure 11. Score chart of main components
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Conclusions 

The sequence of the mathematical techniques of 
signal processing applied to the chromatograms 
improved the signal-to-noise ratio is 37.67% for 
control patients, and in 57.55% for patients with 
prostate cancer. This improvement contributes to the 
accuracy in the identification of peaks and valleys, 
the analysis of the energy and main components. 

The sedimentation graph has a unique behavior 
of the main components corresponding to control 
patients and prostate cancer patients, validating the 
energy analysis of the peaks of each signal in the 
time domain as a differentiating factor. 

In the score graph, the structure of the data shows 
a cluster distribution of 88.88% of the vectors for 
the control patients. The data representing 11.11% 
is considered atypical and involves an error in the 
inclusion of the chromatogram in the control group, 
which could be presented in the urine sample. 

In the case of prostate cancer patients, the distribution 
of the data is uniform in three groups of 33.33% of 
the vectors around the area defined by the control 
patient vectors. This representation delimits signal 
classification regions to diagnose possible prostate 
cancer patients.

The results show evidence to apply the extraction of 
significant peaks, as a pattern extraction technique 
and to find other characteristics that differentiate and 
accentuate the classification of chromatograms of 
prostate cancer patients and control patients.
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