1Agroindustrial Engineering, saul.buelvas@unisucrevirtual.edu.co, Universidad de Sucre, Sincelejo, Colombia
2Ph.D Chemical Engineering, liliana.polo@unisucre.edu.co Universidad de Sucre, Sincelejo, Colombia
3Ph.D Science and Technology of Food and Chemical Engineering, elvis.hernandez@unisucre.edu.co , Universidad de Sucre, Sincelejo, Colombia.
How to cite:
:S. Buelvas-Caro, L. Polo-Corrales and E. Hernandez-Ramos, “Evaluation of the conservation of pineapple “honey gold” minimally processed through the application of edible coatings based on aloe vera-cassava starch”. Respuestas, vol. 24, no. 3, pp. 84-91, 2019.
Received on March 10, 2018 - Approved on July 15, 2018
In this research the effect of edible coatings based on aloe vera and cassava starch on the physicochemical properties and the kinetic parameters of degradation of ascorbic acid (AA) in pineapple minimally processed during 16 days of storage at 4 ° C was evaluated. Five treatments (T1, T2, T3, T4 and T5) were tested, pineapple “honey gold” with coating solutions of different aloe vera / starch concentrations (100/0, 75/25, 50/50, 25/75 and 0/100 respectively), and a control treatment (T6) that corresponds to fruit without coating. The coatings were carried out by immersing the fruit previously processed for 1 minute. The results show that the treatment with the best pH values, titratable acidity (AT) and maturity index (IM) was T3 (pH: 3.61, AT: 0.0480, IM: 2.915), in terms of moisture and soluble solids (SS) the T1 treatment (% Moisture: 81.725) and T4 (SS: 11.19) showed the most optimal values. The model that best described the degradative behavior of AA is zero order, being the T4 treatment the most adequate to preserve vitamin C with a value (k: 0.781), a half-life (t ½: 28 days) and a decimal reduction time (D: 93 days).
Keywords:Ascorbic acid, Cassava starch, Aloe vera, Edible coating
En esta investigación se evaluó el efecto de los recubrimientos comestibles a base de aloe vera y almidón de mandioca sobre las propiedades físico-químicas y los parámetros cinéticos de degradación del ácido ascórbico (AA) en piña mínimamente procesada durante 16 días de almacenamiento a 4ºC. Se probaron cinco tratamientos (T1, T2, T3, T4 y T5), la “miel de oro” de piña con soluciones de recubrimiento de diferentes concentraciones de aloe vera / almidón (100/0, 75/25, 50/50, 25/75 y 0/100 respectivamente), y un tratamiento de control (T6) que corresponde al fruto sin recubrimiento. Los recubrimientos se realizaron por inmersión de la fruta previamente procesada durante 1 minuto. Los resultados muestran que el tratamiento con los mejores valores de pH, acidez titulable (AT) e índice de madurez (IM) fue T3 (pH: 3.61, AT: 0.0480, IM: 2.915), en términos de humedad y sólidos solubles (SS) el tratamiento T1 (% Moisture: 81.725) y T4 (SS: 11.19) mostró los valores más óptimos. El modelo que mejor describe el comportamiento degradativo del AA es el orden cero, siendo el tratamiento T4 el más adecuado para preservar la vitamina C con un valor (k: 0,781), una vida media (t ½: 28 días) y un tiempo de reducción decimal (D: 93 días).
Palabras clave:Ácido ascórbico, Almidón de yuca, Aloe vera, Recubrimiento comestible
In recent years there has been an increase in the demand for horticultural products with a minimal transformation process. The trend of consumption influenced by lifestyle, has been inclined by fresh products or that have not undergone a significant change during processing, this has generated a greater consumption of IV-range products, especially fruits [1]. Among the most consumed fruits is the pineapple (Ananas comosus L), which has a high nutritional value, functional properties and optimal organoleptic characteristics. However, since it is a perishable fruit, it needs a more rigorous postharvest process, which is why it is necessary to apply simple technologies and conservation practices such as edible coatings. These basically are continuous matrices that can be formed by proteins, polysaccharides and lipids, or the combination thereof. [2]. This type of coatings provide the possibility of improving the quality of food by limiting the migration of moisture, fat, oxygen and compounds responsible for flavor, color and aroma [3], helping to extend shelf life [4],[5].
There is a wide variety of materials for the manufacture of edible coatings, being cassava starch one of the most used for this purpose because it does not change the flavor, aroma and transparency of the product. [6]. Similarly, Aloe vera gel has the ability to form colloidal solutions allowing the proper development of edible coatings [7]. The latter has been applied in fruits such as: guava, [8] and roma tomato [9]. The objective of this study was to evaluate the effect of edible coatings based on aloe vera and cassava starch on the physicochemical properties and kinetic parameters of degradation of ascorbic acid (AA) in pineapple of IV-range.
The coatings based on aloe vera / cassava starch as well as being a low cost alternative for the conservation of products of the IV range allow to maintain the physicochemical characteristics of the fruit for long periods. Being, the treatment T3 the one that provides better value of pH, AT and IM (pH: 3.61, AT: 0.0480, IM: 2.915), as far as the humidity and the SS the T1 treatment (% Humidity: 81.725) and T4 ( SS: 11.19) showed the most optimal values. The model that best described the degradative behavior of CA is zero order, being the T4 treatment the most adequate to preserve vitamin C with a degradation rate of (k = 0.781), a half-life (t1 / 2 = 28 days ) and a decimal reduction time of (D = 93 days).
[1] Rico, D., Martín, A., Barry, C., Frías, J., & Heneha, G. (2007). ¨Optimization of steamer jetinjection to extend the shelf life of fresh-cut lettuce¨. Postharvest biology and technology, vol. 45, no. 1, pp. 97- 107.
[2]Quintero, J., Falguera, V., & Muñoz, A. (2010). ¨Peliculas y recubrimientos importancia y tendencia recientes en la cadena hortofrutícola¨. Tumbaga, vol.1, no. 5, pp. 93-118.
[3]Avila, R., & López, A. (2008). ¨Aplicación de sustancias antimicrobianas a películas y recubrimientos comestibles¨. Temas selectos de ingeniería, vol. 2, no. 2, pp. 4-13.
[4] Oms, G., Rojas, M., Alades, L., et al., (2010). ¨Recent approaches using chemical treatments to preserve quality of fresh-cut fruit¨. Postharvest biology and technology, vol. 57, no. 3, pp. 139-149
[5] Amarante, C., Banks, N., & Ganesh, S. (2001). ¨Characterising ripening behaviour to fruit internal atmosphere¨. Postharvest biology and technology, vol. 23, no. 1, pp. 51-59.
[6] Chiumarelli, M., & hubinger, M. (2014). ¨Evaluation of edible films and coatings formulated with cassava starch, glicerol, carnauba wax and stearic acid¨. Food hydrocolloid, vol. 38, pp. 20-27.
[7] Pinzón, M., ibargüen, O., & Arbelaéz arias, l. (2015).¨ Elaboración y caracterización de películas comestibles a base del gel de aloe vera (aloe barbadensis miller l)¨. Revista alimentos hoy, vol. 23, no. 36, pp. 133-149.
[8] García Mera, G. A., Salas Macías, C. A., & Canales Torres, H. G. (2017). ¨Natural edible coating based on Aloe vera as a conservation strategy of Psidium guajava¨. Revista Científica, vol. 30, no. 3, pp. 224-236.
[9] Molocho Flores, l. V., & Orbegoso Moreno, l. (2016). ¨Evaluación de un recubrimiento a base de sábila (aloe vera) y aceite esencial de canela (cinnamomum verum) en el tiempo de vida útil del tomate (lycopersicum esculentum mill) roma¨. (Tesis de pregrado), Universidad Señor de Sipán, Chiclayo
[10] Buitrago Dueñas, E. M. (2017). “Conservación de piña oro miel (Ananas comosus) mínimamente procesada: efecto del tipo de corte, tipo de envase y recubrimiento comestible”. (Tesis de Maestria), Universidad Nacional de Colombia, Palmira.
[11] Lui, F., Wang, Y., Li, R., Bi, x., & Liao, X. (2014).¨ Effects of high hydrostatic pressure and high temperature short time on antioxidant activity, antioxidant compounds and color of mango nectars¨. Innovative Food Science and Emerging Technologies, vol. 21, pp. 35- 41.
[12] Ordoóñez Santos, L. E., & Yoshioka Tama, L. S. (2012). ¨Cinética de degradación térmica de vitamina c en pulpa de mango (Mangifera indica L)¨. Vitae, vol. 19, no. 1, pp. 81-83.
[13] Rodríguez, E. (2011). ¨Uso de agentes antimicrobianos naturales en la conservación de frutas y hortalizas¨. Ra Ximhai, vol. 7, no. 1, pp.153170.
[14] Ortiz, R. D. (2017). ¨Formulación de un recubrimiento comestible antifúngico a base de gelatina, glicerol y natamicina encapsulada en liposomas de fosfatidilcolina para su aplicación en fresa¨. (Tesis de Pregrado),Escuela Politécnica Internacional, Quito.
[15]Torri, L., Sinelli, N., & Limbo, S. (2010). ¨Shelf life evaluation of fresh-cut pineapple by using an electronic nose¨. Postharvest Biology and Technology, vol. 56, no. 3, pp. 239-245.
[16] Azeredo, L., Freire, D., Soares, R., Leite, S., & Coelho, R. (2004). ¨Production and partial characterization of thermophilic proteases from Streptomyces sp. isolated from Brazilian cerrado soil¨. Enzyme Microbiology Technology, vol. 34, pp. 354-358.
[17]Ramírez, A., & Pacheco de Delahaye. (2011). ¨Composición química y compuestos bioactivos presentes en pulpas de piña, guayaba y guanábana¨. Interciencia, vol. 36, no. 1, pp. 71-75.
[18] Treviño Garza, M. Z., García, S., Heredia, N., et al., (2017). ¨Layer-by-layer edible coatings based on mucilages, pullulan and chitosan and its effect on quality and preservation of fresh-cut pineapple (Ananas comosus)¨. Postharvest Biology and Technology, vol. 128, pp. 63-75.
[19] USDA. (2011). Nutrient database for standard reference. U. S. Food and Drug Administration, Octubre del 2018. [online]. Disponible en: https://www.ams.usda.gov/
[20]Piedrahita Gallo, A., & Villegas llano, C. (2016). ¨Efecto de la aplicación de un recubrimiento comestible en la conservación de las características sensoriales y tiempo de almacenamiento de la mora castilla (Rubus glaucus Benth.) sin espinas poscosecha¨, Universidad Tecnológica de Pereira, Pereira.
[21] Rangel, D., Espinoza, B., Jorge, C., et al., (2009). ¨Efecto del 1-metilciclopropeno (1-MCP) y de una película comestible sobre la actividad enzimática y calidad poscosecha del mango “Ataulfo”¨. Revista Fitotecnia, vol. 32, no. 1, pp. 53-60.
[22] Pérez, A. F., Aristizábal, I. D., & Restrepo, J. I. (2016). ¨Conservación de mango Tommy Atkins Mínimante procesado mediante la aplicación de un recubrimiento de aloe vera (Aloe barbandesis miller)¨. Vitae, 65-77.
[23] Dussán Sarria, S., Reyes Calvache, P. M., & Hleap Zapata, J. I. (2014). ¨Efecto de un Recubrimiento Comestible y Diferentes Tipos de Empaque en los Atributos Físico-Químicos y Sensoriales de Piña `Manzana´ Mínimamente Procesada¨. Información Tecnológica, vol. 25, no. 5, pp. 41-46.
[24] Mantilla, N., Castell Perez, M. E., Gomes, C., & Moreira, R. G. (2013). ¨Multilayered antimicrobial edible coating and its effect on quality and shelf-life of fresh-cut pineapple (Ananas comosus)¨. LWT - Food Science and Technology, vol. 51, pp. 37-43.
[25] Banin Sogvar, O., Koushesh Saba, M., & Emamifar, A. (2016). ¨Aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit¨. Postharvest Biology and Technology, vol. 114, pp. 29-35.
[26] Vieira López, J. M., Flores, M. L., Jasso de Rodríguez, D., et al., (2016). ̈Effect of chitosan–Aloe vera coating on postharvest quality of blueberry (Vaccinium corymbosum) fruit ̈. Postharvest Biology and Technology, vol. 116, pp. 88-97
[27] Amanullah, S., Muzammil Jahangir, M., Muhammad Ikram, R., et al., (2016). ¨Aloe vera Coating Efficiency on Shelf Life of Eggplants at Differential Storage Temperatures¨. Journal of Northeast Agricultural University, vol. 23, no. 4, pp. 15-25.
[28] Baldwin, E., Burns, J., Kazokas, W., et al., (1999). Effect of two coatings with different permeability characteristics on mango (Mangífera índica L.) ripening during storage. Postharvest Biology and Technology, vol. 17, no.3, pp. 215-226.
[29] Cáceres, I., Mulkay, T., Rodríguez, J. et al,. (2003). ¨Influencia del encerado y tratamiento térmico en la calidad postcosecha del mango¨. FAO, Enero de 2019. [online]. Disponible en:http://agris.fao.org/agris-search/search.do?recordID=CU2004900149
[30] Feygenberg, O., Hershkovitz, V., Ben-arie, R., et al., (2005). ¨Postharvest use of organic coating for maintaining bio-organic avocado and mango quality¨. Acta Horticulturae, vol. 682, no. 3, pp. 507-512.
[31] Jiang, Y., Li, J., & Jiang, W. (2005). ¨Effects of chitosan coating on shelf life of cold-stored litchi fruit at ambient temperature¨. LWT - Food Science and Technology, vol. 38, pp. 757-761.
[32] Parra, D., Tadini, C., Ponce, P., & lugao, A. (2004). ¨Mechanical properties and water vapor transmission in some blends of cassava starch edible films¨. Carbohydrate, vol. 58, pp. 475-481.
[33] Han, J., Seo, G., Park, I., Kim, G., & Lee, D. (2006). ¨Physical and mechanical properties of pea starch edible films containing beewax emulsion¨. Journal Food Sciencie, vol. 71, no. 6, pp. E290-E296.
[34] Dahall, R. (2013). ¨Advances in edible coatings for fresh fruits and vegetables: a review¨. Critical Review in Food Science and Nutrition, vol. 53, pp. 435-450.
[35] Aguilar, M. (2005). ¨Propiedades Fìsicas y mecànicas de Peliculas Biodegradables y su empleo en el recubrimiento de fruto de aguacate¨. (Tesis de Maestria), Instituto Politècnico Internacional, Mexico D.F.
[36] Fenema, O. Química de los alimentos. España: Zaragoza, 2010.
[37] Saci, F., & hayette, I. (2015). ¨Effect of storage on the nutritional quality,carotenoid and ascorbic acid contents of two commercial beverages¨. International journal of chemical and biomolecular science, vol. 1, no. 2, pp. 49-53.
[38] Robles, M., Gorinstein, S., Martín, O., et al., (2007). ¨Frutos tropicales mínimamente procesados: potencial antioxidante y su impacto¨. Revista interciencia, vol. 32, no. 4, pp. 227-232.
[39] Mendoza Corvis, F. A., Arteaga Márquez , M. R., & Pérez Sierra, O. A. (2017). ¨Degradación de la vitamina C en un producto de mango (Mangifera indica L.) y lactosuero¨. Ciencia y Tecnologia Agropecuria, vol. 18, no. 1, pp. 125-137.