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ABSTRACT
In this work the advantage of the use and implementation of ORC heat recovery systems for low 
temperature (<230°C) exhaust gases from a natural gas engine was studied. Different organic fluids 
and working conditions were analyzed in order to determine the best decision in terms of energy 
efficiency and exergética refers to criteria such as cost, environmental impact, flammability toxicity 
among others. It was found that the performance for the different configurations is closely linked to 
the evaporation pressure, reaching an electrical power of 120kWe (10%) for the simple configuration. 
The working fluid with the highest performance was acetone regardless of the configuration analyzed. 
Simultaneously, an international and national context was created in different fields for heat recovery 
systems. 

Palabras clave:

Fluido orgánico, 
Motor industrial 
ORC,
Sistemas de 
recuperación de 
calor residual, 
Visión mundial

RESUMEN
En este trabajo se estudió la ventaja que posee el uso e implementación de los sistemas de recuper-
ación de calor ORC para los gases de escape a baja temperatura (<230°C) proveniente de un motor a 
gas natural. Diferentes fluidos orgánicos y condiciones de trabajo fueron analizados con la finalidad 
de determinar la mejor decisión en cuanto a eficiencia energética y exergética se refiere teniendo cri-
terios tales como, costos, impacto ambiental, toxicidad flamabilidad entre otros. Se encontró que el 
rendimiento para las distintas configuraciones está estrechamente ligada a la presión de evaporación, 
llegando a alcanzar una potencia eléctrica de 120kWe (10%) para la configuración simple. El fluido 
de trabajo con mayor desempeño fue la acetona independientemente de la configuración analizada. 
De manera simultánea se realizó un contexto a nivel internacional y nacional en diferentes ámbitos 
para los sistemas de recuperación de calor.
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Introduction

Due to the problems generated by the excessive use 
of non-renewable energy sources in the economic, 
social, technological and environmental fields, 
the need for inclusions of new energy alternatives 
is increasingly denoted. Of the different energy 
alternatives, the residual heat recovery systems 

stand out due to the easy adaptation they have when 
working with the plants currently in use.

Waste heat recovery is a method in which waste heat 
from a plant is used for cogeneration  [1], however 
the efficiency of these systems depends on the 
quality of energy waste produced in industry, which 
is a parameter associated with the temperature of the 
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same. In the case of the exhaust gases of an engine if 
the temperature is higher than 650°C it is considered 
of high quality [2], for ranges between 230°C and 
560°C they are of intermediate quality [3] and for 
exhaust gases with a temperature lower than 230°C 
they are considered of low quality [4].

In the last decades the ORC (Organic Rankine Cycle) 
heat recovery systems have been consolidated as a 
mature technology, in such a way that it has been 
standardized as one of the technologies with greater 
viability as regards the conversion of waste heat 
to electrical energy [5], [6]. Its high utilization of 
residual energy, easy reduction of volume and weight, 
rigidity for different applications, long service life, 
low price and low maintenance are one of the many 
advantages that have this cycle, compared to others 
such as supercritical CO2 and Kalina [7], [8].

Having as a goal the rational use of energy, different 
authors have proposed and analyzed different 
applications from the selection of the organic 
fl uid according to environmental, economic, 
toxicity, fl ammability among others [7], [9]–[11] 
for the improvement in the performance of the 
same, however, when taking into account all these 
conditions, few are the fl uids to use [12]–[14].

With the development and optimization of CROs 
applied to engines, we seek to recover waste heat 
with the goal of producing energy at low cost [15], 
not forgetting that its use is diversifi ed to power 
generation in geothermal fi elds [16], hybrids [17], 
biomass [18], among others. More advanced 
analyses such as thermo-economics and advanced 
exergoeconomic analyses have been developed for 
the ORC [19].

The purpose of this work, is in the characterization 
of the most infl uential parameters in the exergetic 
and energetic effi ciency, besides the search of the 
most effi cient fl uid for the different confi 
gurations to analyze.

Waste heat recovery system based on ORC

The chronological evolution of the research work 
associated with the implementation of ORC for 
waste energy recovery is shown in Figure 1, which 
highlights 5 stages clearly identifi ed in the literature.

Figure 1. Chronological evolution of research in ORC

The application of different organic fl uids in ORC 
has been of interest to many researchers, because the 
change of phase from liquid to steam in the system 
affects its thermal performance. In addition, the 
thermochemical properties of the fl uid must support 
both thermodynamic stability and the potential 
environmental impact [20].

In the period from 2007 to 2010, authors such 
as Drescher et al. [21] conducted research on 
the application of new working fl uids in ORC 
for a biomass application, and Mago et al. [22] 
theoretically studied the effect these fl uids have 
on cycle performance at different operating 
temperatures and pressures. Kosmadakis et al. [23] 
performed tests on more than 30 organic fl uids, in 
this study it is determined that R245fa is the most 
suitable for ORC applications with MCI in terms 
of performance, but in environmental terms its use 
is restricted by international standards given its 
global warming potential (GWP) value. In solar 
applications Tchance et al. [24] determine that the 
most suitable fl uid is the refrigerant R-134a, due 
to its low toxicity and fl ammability, in addition to 
the high ratio of pressure and effi ciency that can be 
handled in the ORC when used.

For the period from 2010 to 2013, some contributions 
were made to the application of ORC to generation 
plants with biomass and combustion engines, 
highlighting the work of Vaja and Gambarotta [25], 
who when evaluating only with an energy and not 
thermo-economic approach the performance of the 
simple and regenerative ORC confi gurations, for 
the use of waste gas heat from a stationary MCI of 
2900 kW, achieve a 12% increase in the effi ciency 
of the process. The system was evaluated only for a 
single operating condition of the thermal source, and 
no economic indicators were studied to determine 
the viability of the proposed system. Kalina [18], 
investigated the performance of a biomass power 
generation system consisting of a gasifi er, two gas 
MCI G3412C LE and G3412C TA of 360 kW and 
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280 kW respectively, and an ORC, the latter is used 
as heat recovery in equipment exhaust manifold 
and cooling water. The theoretical study lacks 
experimental results of the thermal source and 
an economic analysis to prove and guarantee its 
feasible and viable application in a real context. Also, 
Mingshan et al [26] performed an energy analysis 
for the SORC in order to recover energy from a 
heavy-duty diesel engine, obtaining a heat recovery 
efficiency between 10% and 15% when the plate 
heat exchanger is optimized, and the engine operates 
at partial load, with a medium-high power condition 
instead of the engine’s nominal duty point, justifying 
the study at different engine operating speeds, which 
requires engine modeling.

Tian et al. [27] then performed a techno-economic 
analysis of a single ORC coupled to a 235 kW 
diesel MCI, to evaluate 20 different working 
fluids and obtain both the highest net output 
power per unit of mass flow and the best energy 
efficiency with refrigerants R-141b and R-123 
respectively. The study is limited to a single engine 
operating condition and a proposal for parametric 
optimization of the generation cost and evaporator 
dimensions.

In the period 2013 to 2015, efforts were focused 
on developing heat recovery systems with ORC, 
for solar thermal and geothermal power generation 
applications, highlighting the work of Hung et al. 
[28] who investigated the behavior of the simple 
ORC, only for the recovery of energy from the 
residual heat of the air produced by solar ventilation 
systems, consequently the overall efficiency of 
the system increased by 6.2%. On the other hand, 
Zare V. [29] began to evaluate economic criteria for 
thermal performance studies, applied to three ORC 
configurations associated with binary geothermal 
power plants, showing better energy results for the 
RORC, and from the economic point of view the 
SORC is the best option, given that it consists of the 
least amount of equipment and a lower acquisition 
cost. The results are limited only to the geothermal 
source evaluated and the fluids studied, in addition 
the study of the double pressure configuration is not 
presented.

Additionally, studies from the exergetic point of 
view have been developed in detail without thermo-
economic analysis, such as the modeling developed 
by Kerme and Orfi [30], who evaluate the influence 
of temperature at the inlet of an ORC turbine on 
energy and exergetic efficiency parameters driven 
by solar collectors, obtaining that the increase in 
temperature increases efficiency, while the total 
exergy destruction of the decrease.

In order for an ORC to present optimal operating 
parameters, it must mainly comply with the criterion 
of minimum destroyed exergy, the exergetic analysis 
makes it possible to identify all aspects that affect 
global energy efficiency, and the accounting of 
exergoeconomic costs aims to establish a monetary 
value for all flows of materials and energy, providing 
a reasonable basis for the allocation of prices, an 
approach that has predominated in recent studies of 
application of ORC to recovery of waste gases [31].

In the period from 2015 to 2017, the trend in 
research concerning exergoeconomic analyses 
increased in quantity and depth, since they have 
been based on models such as the work of Karellas 
and Braimakis [32], by obtaining a thermodynamic 
model, and an economic analysis of a micro-scale 
trigeneration system capable of producing combined 
heat, electricity and refrigeration, based on the joint 
operation of an ORC and a Steam Compression 
Cycle (VCC), where the three systems involved, 
ORC, VCC and the biomass electricity generator, 
were connected to the same axis, for electricity 
production equal to 1.42 kWe, and a calorific power 
of 53.5 kWth, with a net electrical efficiency of 
2.38%, while the energy efficiency of the ORC was 
estimated at around 7%. The development of multi-
generation energy systems based on geothermal 
energy has also been optimized with heat recovery 
cycles, in this sense Akrami et al. [33] include an 
ORC to generate electricity and heating, performing 
an energy, exergetic and exergoeconomic analysis 
of the system to achieve an energy and exergetic 
efficiency of 34.98% and 49.17% respectively.

Studies focused on vehicle engines and not on 
generation stationary engines have been evaluated 
by simulations of the performance of a high-strength 
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truck equipped with an on-board ORC exhaust heat 
recovery system, where the truck/engine and ORC/
cooling system models were developed in GT-suite 
and experimentally validated, complemented by a 
coupling model in the Simulink environment, and 
conclude that the speed of the truck engine affects 
its performance with the ORC system, and that the 
truck engine shows a gain of 3.07 kW at the speed of 
95 km/h under full load conditions [34].

Distribution of ORC facilities in the industry

Figure 2 shows that ORC applications for the 
purpose of exploiting low-quality waste heat have 
been tested in different industrial facilities, where 
39% of the applications are focused on gas turbines, 
while 16% are focused on MCI [35], [36].

Figure 2. Distribution of ORC facilities in the industry
Source: Adapted from [35], [36]

To design a heat recovery cycle is preponderant to 
know the recovered power, Figure 3 represents the 
companies that implement more ORC applications 
and the energy recovered with these systems. The 
Israeli company ORMAT, able to take advantage 
of its 1102 ORC units, manages to generate 1701 
MW of installed capacity and its worldwide 
presence is highlighted. By number of units (267) 
and installed capacity (363 MW) is followed by the 
Italian company Turboden, presenting a competition 
in Europe ORC. In addition, the countries with 
the highest total installed capacity in MWel are 
presented in blue, with the USA standing out with 
80 MWel, closely followed by China with 74 MWel 
and Canada with 70 MWel.

Figure 3. Total installed energy recovery capacity by country
Source: Adapted from [35], [36]

Evaluation of ORC performance for waste heat 
recovery

The ORC uses organic compounds, i.e. hydrocarbons, 
refrigerants, ethers and siloxanes, instead of water as the 
working fl uid; therefore, cycle performance depends 
on the selection of the working fl uid, which means that 
each system requires a study under particular operating 
conditions, as shown in Figure 4.

Figure 4. Evaluation of simple ORC with different organic fl uids

The simple ORC coupled with a generation motor 
under a confi guration shown in Figure 5, and operating 
with thermal oil temperatures at the evaporator inlet 
(TS3 source temperature) ranging from 250°C to 
300°C, and turbine and pump effi ciencies of 80 
% respectively, can reach electrical power levels 
close to 120 kWe, which would represent a 10 % 
increase in the power of the Jenbacher JMS 612 
GS-N.L motor under study at low operating speed, 
where it generates around 1200 kWe. However, this 
performance can be improved with thermo-economic 
optimizations of different ORC confi gurations for 
the operating conditions of the exhaust gases of the 
stationary natural gas generation engine.
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Figure 5. ORC-Secondary Circuit Confi guration of ICE-Coupler

Considering that an ORC generally uses isentropic 
organic fl uids, with low vaporization heat, do not 
need to be overheated to increase their recovery 
effi ciency, subcritical working conditions are desired 
for lower cost equipment, and favors the economic 
viability of these projects when used for energy 
recovery processes for generation purposes [37].

The performance of the different ORC confi 
gurations in a waste gas recovery system depends 
primarily on evaporating pressure. The confi 
guration studied are the simple Organic 
Rankine cycle (SORC), the dual Organic 
Rankine cycle (DORC), and the regenerative 
Organic Rankine cycle (RORC). However, other 
variables to a lesser extent also affect both the 
power delivered by the system and the thermal 
effi ciency of the ORC, as shown in Figure 6 
the single ORC cycle, with recuperator and 
double pressure.

Figure 6 . Thermal and exergetic effi ciency of different ORC confi gurations 
operating with Acetone, Benzene and Toluene. 

These organic fl uids have a good performance in the 
temperature range that can be obtained through the 

residual gases of the engine, where acetone is the 
most effi cient compound for both study cases.

Conclusions

Climate change is one of the environmental problems 
that is orienting researchers to the development of 
energy generation systems that promote the rational 
use of energy and a better cost-benefi t ratio. In this 
sense, waste heat recovery systems of generation 
engines through organic Rankine cycles have been 
considered as a technology that promises an important 
market penetration, once the technical and economic 
barriers are overcome. Even so, there has been an 
exponential increase in research related to the subject, 
in addition to the availability of compact ORC 
equipment available on the market, of which 16% 
correspond to recovery of residual heat from MCI.

With respect to the bibliographic review developed on 
the subject, it has been evidenced that a great part of 
the works has been based on the theoretical modeling 
of the phenomenon, which has not allowed to know 
really the performance and economic indicators 
of these units when operating coupled the exhaust 
gases of engines from generation to natural gas. The 
characterization and validation of the residual heat 
of the generation engine has been considered as a 
fundamental factor for the application of the ORC in 
these real operating environments.

Likewise, it can be concluded that ORC operating 
with gases at low temperature (<230°C) is energetic 
and economically viable, which has allowed its 
presence in the market since the early 80’s, especially 
when biomass is used as a resource, geothermal and 
solar solutions. However, there are still aspects that 
limit the progress of this technology when integrated 
with internal combustion engines with exhaust gases 
at medium temperature (230°C to 650°C), such as 
the economy of scale of the process, the skepticism 
of some of the plant managers when integrating a 
solution with high PBP and LCOE, as well as the 
neglect of the recovery of residual heat in the engines 
by governments and decision makers in the industrial 
sector. These problems particularly to date and hinder 
the widespread acceptance of ORC technology in 
industrial generation systems. Thus, this research 
pursues the thermo-economic optimization of single 
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ORC configurations, with recuperator and double 
pressure integrated to a 2 MW natural gas ICM, in 
order to improve their economic viability.
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