1Candidato a Ph.D en Ingeniería. Docente tiempo completo. Universidad Francisco de Paula Santander. Facultad de Ingeniería. Dpto. de Ingeniería Mecánica, Ocaña, Colombia.Email: eeespinelb@ufpso.edu.co Orcid: 0000-0003-4479-2874
2Candidato a PhD en Ingeniería. Docente tiempo completo. Universidad Francisco de Paula Santander Ocaña. Facultad de Ingeniería. Dpto. de Ingeniería Mecánica, Ocaña, Colombia.Email: enflorezs@ufpso.edu.co Orcid: 0000-0003-2527-0413
3Candidato a PhD en Ciencias en Ingeniería Mecánica. Universidad Francisco de Paula Santander Ocaña, Colombia e Instituto Politécnico Nacional, Ciudad de México, México. Orcid: 0000-0002-2734-1425 Email: ragarcial@ufpso.edu.co Animal Production Department, Universidad Nacional de Colombia at Medellín, AA 1779, Colombia.
How to cite:
J.E Espines-Blanco, E. Florez-Solano y R.A Garcia-Leon, “Caracterización Físico-Química De Un Material Arcilloso Proveniente De La Región Nororiental De Colombia, Para La Fabricación De Bloques H-10”. Respuestas, vol. 25, no. S2, pp. 20-28, 2020.Respuestas, 25 (S2), January - April 2020, pp. 20-28, ISSN 0122-820X - E ISSN: 2422-5053https://doi.org/10.22463/0122820X.1834
Received on September 25, 2019; Approved on December 15, 2019
In this work, the physical-chemical characterization of clay used for the manufacture of H-10 ceramic blocks in the municipality of Ocaña, Norte de Santander, Colombia is presented. The collection of samples was carried out from the quarry of a company dedicated to the manufacture of masonry products for construction. Initially, in the physical characterization a stratified sampling was made according to the texture and appearance of the clay, to identify the presence of carbonates; In addition, the wet granulometry test was carried out for each sample in order to determine the percentages of sand, silt, and clays. The chemical characterization was carried out by X-ray diffraction (DRX) to the samples mixed with the procedure used by the company, to determine the phases formed in the material and the degree of Mosh hardness, in order to buy the values with respect to the final product manufactured by the company. Finally, the results of the final properties of the blocks are analyzed with respect to the Colombian NTC 4205 technical standard procedure, against the physical-chemical characteristics of the clay and the properties of the mixture used in the process, to propose strategies and recommendations on the selection of the raw material that allows blocks with greater mechanical properties and less production defects, thus complying with the requirements established by Colombian technical standards.
Keywords:Blocks H-10; hydrometry; mixed; ceramics; brick; DRX.
En este trabajo, se presenta la caracterización físico-química de una arcilla usada para la fabricación de bloques cerámicos H-10 en el municipio de Ocaña, Norte de Santander, Colombia. La recolección de muestras se realizó desde la cantera de una empresa dedicada a la fabricación de productos de mampostería para la construcción. Inicialmente, en la caracterización física se realizó un muestreo estratificado de acuerdo a la textura y apariencia de la arcilla, para identificar la presencia de carbonatos; además, se llevó a cabo el ensayo de granulometría por vía húmeda para cada muestra con la finalidad de determinar los porcentajes de arenas, limos y arcillas. La caracterización química se llevó a cabo por difracción de rayos X (DRX) a las muestres mezcladas con el procedimiento utilizado por la empresa, para determinar las fases formadas en el material y el grado de dureza Mosh, con la finalidad de comprar los valores respecto al producto final fabricado por la empresa. Finalmente se analizan los resultados de las propiedades finales de los bloques respecto a la norma técnica Colombia NTC 4205, frente a las características físico químicas de la arcilla y a las propiedades de la mezcla utilizada en el proceso, para proponer estrategias y recomendaciones sobre la selección de la materia prima que permita bloques con mayores propiedades mecánicas y menos defectos por producción, cumplimento de esta forma con los requisitos establecidos por normas técnicas colombianas.
Keywords:Bloques H-10; hidrometría; mezclado; cerámica; ladrillera; DRX.
The ceramic process is mainly composed of three phases, which are; preparation of ceramic paste, molding of the piece and cooking. In the first phase of the preparation process, the composition and plasticity are modified by adding other clays in order to obtain a homogeneous ceramic paste, then molded according to the desired shape under pressure or extrusion. Once, the molded part has been obtained, it is dried by controlling the evaporation rate of water in order to avoid defects in the piece. Subsequently, the piece is sintered; that is, it undergoes the cooking process in order to decrease porosity, increase density and mechanical resistance [1] [2][3].
According to production capacity and technological development, brick industries have been classified as chircal, small, medium and large bricks [4]. In general, these industries maintain the production process as can be seen in Figure 1.
For the development of this research, a channel-type sampling was performed to classify the clays of the quarry, with an experimental type of investigation; taking into account that the clay samples were collected directly in the mines of a brick by direct observation. Likewise, from the results of the analyzes that were obtained from the samples, the variables to be studied for the approach and implementation of the experimental studies were determined. In addition, laboratory tests were carried out in order to determine the variables that were studied, to identify those that have the greatest impact and thus design the optimal mixture in the manufacture of H-10 blocks [19][20]. Taking into account the above, the procedure shown in the following figure 2 was performed:
After the collection of the samples, these were prepared according to the procedures established by the NTC 4017 standard to perform the physical tests for the determination of the presence of carbonates and granulometry by wet route; in addition to the X-ray diffraction test (DRX) to determine the phases present and their corresponding degree of Mosh hardness. With the results obtained, the contraction curve of the block during burning and the cooking curves of the samples at different temperatures were obtained, as well as the final mechanical properties of the blocks such as the compressive strength and the modulus of flexion or breakage determined according to the technical standard Colombia NTC 4205.
For the development of the physicochemical characterization each of the samples was dried at a temperature of 110 °C for 10 hours. Once dried, the quartet and homogenization were carried out, dividing each sample to perform the different tests. The grinding of the pulp was carried out approaching in particle size to the current pulp of production.
Currently, in the artisanal sector, the mixture of clays for the manufacture of bricks is 60% of sandy clay and 40% of plastic clay, this mixture being one of the possible causes of the poor quality of the block such as: cracks, poor cooking, color non-uniform, among other factors that affect the finished product by an unsuitable dosage [27] [28][29].
Of the different types of clay found in the quarry and initially classified by color and appearance, four different types of green clay, three types of yellow clay and one type of white clay were defined, which later by means of granulometry and X-ray diffraction tests , were reclassified in: purely clay, clay-silty and clay degreaser or thick, of which it was found that according to their composition and hardness they are suitable for the manufacture of openwork blocks or bricks to be used in masonry.
The results of the granulometry tests indicate that most of the samples have a 45% fine sand index; which is of great importance for the manufacture of ceramic pastes, because it allows the samples to be classified as low compaction materials, low plasticity, which should not be used alone as a production paste because they will have low dry and cooked resistance, as well as high water absorption. Also, sand is necessary for the extrusion of masonry products for construction, because it helps reduce drying time and prevents the formation of cracks in the pieces.
It can be affirmed that a good clay to be used in the production of masonry products are those samples that operate at low temperatures, that is, between 950 ºC and 1050 ºC. Where they also present water absorption values that comply with the standard of finished product that is to be produced, as established by NTC 4017 and 4205.
[1] R. A. Muñoz, J. A. Muñoz, P. Mancilla, and J. E. Rodríguez, “Caracterización fisicoquímica de arcillas del municipio de Guapi- costa pacífica caucana (Colombiana),” Química, vol. 31, pp. 537–544, 2007.
[2] R. A. García-León and E. Flórez Solano, “Determinación de la ventana del proceso productivo en la fabricación de bloques H-10 en Ocaña Norte de Santander y la región,” Ingenio UFPSO, vol. 9, no. 2011–642X, pp. 35–43, 2016.
[3] R. A. García-León, E. Flórez-Solano, and Y. Medina-Cárdenas, “Caracterización física de las arcillas utilizadas en la fabricación de productos de mampostería para la construcción en Ocaña Norte de Santander,” Espacios, vol. 39, no. 53, pp. 1–6, 2018.
[4] R. A. García-León, E. Flórez-Solano, and Y. Medina-Cárdenas, “Caracterización física de las arcillas utilizadas en la fabricación de productos de mampostería para la construcción en Ocaña Norte de Santander,” Espacios, vol. 39, no. 53, pp. 1–6, 2018.
[5] O. Riojas Castillo and N. E. Rodríguez Montaña, “Características de hornos para productos cerámicos del Parque Minero Industrial El Mochuelo, localidad 19 de Bogotá, D.C.,” ConCiencias, 2004.
[6] R. A. García-León, C. Acevedo-Peñaloza, and J. Rojas-Suarez, Metodologia para la fabricación del bloque H-10 para la industria cerámica del Norte de Santander. Bogota, Colombia: ECOE Ediciones, 2019.
[7] E. Kamseu et al., “Characterisation of porcelain compositions using two china clays from Cameroon,” Ceram. Int., vol. 33, no. 5, pp. 851– 857, 2007.
[8] S. N. Monteiro and C. M. F. Vieira, “Influence of firing temperature on the ceramic properties of clays from Campos dos Goytacazes, Brazil,” Appl. Clay Sci., vol. 27, no. 3–4, pp. 229–234, 2004.
[9] J. A. Junkes, M. A. Carvalho, A. M. Segades, and D. Hotza, “Ceramic tile formulations from industrial waste,” InterCeram Int. Ceram. Rev., vol. 60, no. 1, pp. 36–41, 2011.
[10] M. Lassinantti Gualtieri, M. Romagnoli, and A. F. Gualtieri, “Influence of body composition on the technological properties and mineralogy of stoneware: A DOE and mineralogicalmicrostructural study,” J. Eur. Ceram. Soc., vol. 31, no. 5, pp. 673–685, 2011.
[11]R. A. García-León, E. Flórez-Solano, and C. H. Acevedo-Peñaloza, “Physical-ceramic characterization of clays used in the manufacture of mansory products for construction,” Respuestas, vol. 23, no. 2, pp. 12–21, 2018.
[14] J. F. Gelves and J. Sánchez, “Comportamiento de las arcillas del Área Metropolitana de Cúcuta sometidas a proceso de moldeo por extrusión.,” Respuestas, vol. 14, no. 2, pp. 32–38, 2009.
[15] E. Barrachina, J. Llop, M. D. Notari, and B. Carda, “Potencialidad de un residuo de frita procedente del sector cerámico como materia prima para la producción de material vitrocerámico,” Cerámica y Vidr., vol. 54, no. 0366–3175, pp. 101–108, 2016.
[16]N. . Quaranta et al., “Diseño de productos cerámicos con la incorporación de diversos residuos siderúrgicos,” Iberimet XI, pp. 1–14, 2010.
[17]O. M. O. Zro, S. Zhai, J. Liu, and J. Wang, “Microstructure of the directionally solidi fi ed ternary eutectic,” vol. 42, pp. 8079–8084, 2016.
[18] B. Konar, P. Hudon, and I. Jung, “Coupled experimental phase diagram study and thermodynamic modeling of the Li2O-Na2OSiO2 system,” J. Eur. Ceram. Soc., 2017.
[19] R. A. García-León, M. A. Acosta, and E. Flórez, “Análisis del comportamiento de los frenos de disco de los vehículos a partir de la aceleración del proceso de corrosión,” Tecnura, vol. 19, no. 45, pp. 53–63, 2015.
[20] R. A. García-León and R. Bolívar, “Caracterización Hidrométrica de las Arcillas Utilizadas en la Fabricación de Productos Cerámicos en Ocaña , Norte de Santander,” INGE CUC, vol. 13, no. 1, pp. 53–60, 2017.
[21] M. A. Macías López, “Estudio de las transformaciones en estado sólido de las arcillas de San José de Cúcuta utilizadas en la fabricación de baldosas mediante caracterización mineralógica por difracción de rayos x de muestras policristalinas.,” Universidad Industrial de Santander, 2006.
[22] R. Amorocho Parra, “Analisis de la interacción quimica entre los fluidos de formacion, fluidos de perforacion y composicion mineral de rocas arcillosas en la estabilidad del pozo.,” Universidad Industrial de Santander, 2004
[23] R. A. García-León, E. N. Flórez-Solano, and C. H. Acevedo-Peñaloza, “Clay surface characteristics using atomic force microscopy,” Rev. Fac. Ing., vol. 0, no. 87, pp. 23–34, 2018.
[24] J. Linares, F. Huertas, and J. Capel, “La arcilla como material cerámico. Caracteristicas y compotamiento,” in Universidad de Granada, 2008, pp. 479–490.
[25] R. A. García-León, E. Flórez-Solano, and M. M. Rodríguez-Castilla, “Application of the procedure of the ISO 50001:2011 standard for energy planning in a company ceramic sector,” DYNA, vol. 86, no. 209, pp. 120–126, 2019.
[26] R. A. García-León, E. Florez Solano, and C. H. Acevedo-peñaloza, “Caracterización térmica de mezclas de arcillas utilizadas en la fabricacion de productos de mampostería para la construcción,” Rev. Colomb. Tecnol. Av., vol. 1, no. 31, pp. 22–30, 2018.
[27] H. Gutiérrez Pulido and R. De La Vara Salazar, Análisis y diseño de experimentos., McGraw-Hil., vol. 1. Mexico, 2015.
[28] M. Coronado, A. M. Segadães, and A. Andrés, “Combining mixture design of experiments with phase diagrams in the evaluation of structural ceramics containing foundry by-products,” Appl. Clay Sci., vol. 101, pp. 390–400, Nov. 2014.
[29] J. Sánchez, J. A. Orozco, and L. Peñaloza, “Evaluación de mezclas de arcillas para la fabricación de ladrillos refractarios que sirvan para la reconversión tecnológica de los hornos utilizados en Norte de Santander.,” Rev. Investig. - Univ. del Quindío, vol. 26, no. 1, pp. 57–64, 2014.