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ABSTRACT 

Keywords: 
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This document estimated the behavior of the CO2 flux in the San Andrés Islas maritime for the first 
half of 2019. This behavior was established based on the thermodynamic relationship between the sea 
surface temperature, the partial pressures of CO2 in the atmosphere, and the water column, this from 
data derived from remote sensors. The satellite data were derived from the MODIS aqua sensors and 
the MERRA model for sea surface temperature and wind speed respectively. Satellite images were 
obtained from NASA databases, subsequently processed and specialized in ArcGis 10.1. Finally, the 
behavior of the CO2 flux is shown for the San Andrés Islas maritime, finding that it does not tend to 
capture CO2, so acidification processes are discarded for the selected study period.

RESUMEN 

Palabras clave: 

Flux de CO2, 
temperatura 
superficial del 
mar, 
acidificación, 
maritorio.  

En el presente documento se estimó el comportamiento del flux de CO2 en el maritorio de San Andrés 
Islas para el primer semestre de 2019. Dicho comportamiento se estableció a partir de la relación 
termodinámica entre la temperatura superficial del mar, las presiones parciales del CO2 en la atmosfera 
y la columna de agua, esto a a partir de datos derivados de sensores remotos. Los datos satelitales 
fueron derivados de los sensores MODIS aqua y el modelo MERRA para la temperatura superficial del 
mar y la velocidad del viento respectivamente. Las imágenes satelitales se obtuvieron a partir de las 
bases de datos de la NASA, posteriormente procesadas y especializadas en ArcGis 10.1. Finalmente, 
se muestra el comportamiento del flux de CO2 para el maritorio de San Andrés Islas, encontrando que 
este no tiene una tendencia a la captura de CO2, por lo cual se descartan procesos de acidificación para 
el periodo de estudio seleccionado.

Introduction 

The anthropogenic CO2 is emitted in an approximate amount of 35,000 million [1] tons each year, mainly 
due to the combustion of fossil fuels such as coal, oil and gas. This chemical species has attracted the attention 
of scientists around the world in recent years because a correlation has been observed between the 
proportional increase in global temperature [2] and, the concentration of CO2 in the atmosphere [3], [4], 
which is why it has been attributed as the main precursor to the phenomenon of climate change [5]. 
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In this sense, several investigations show the effects of CO2 on the atmosphere, climate and its consequent 
effects on some strategic ecosystems [6], [7], since around 46% of CO2 emitted (approximately 16,000 
tons/year) [8] remain in the atmosphere for several centuries, there being no consensus around their residence 
time; What is well known is the proportion of the remaining CO2: 54% [9] is absorbed in the continental and 
marine ecosystems [8] - [10], the highest proportion being that ending in the oceans, which is estimated 
between 30 and 40% of the total of the emitted CO2 [11], [12]. 

Therefore, understanding the behavior of CO2 in the Colombian maritime is essential for the conception of 
conservation strategies and public policies [13], [14] that allow the safeguarding of marine ecosystems, 
especially coral reefs [15]. This need is evident when reviewing environmental regulations in Colombia, 
where there is a gap around the mechanisms for monitoring and mitigating acidification by CO2 in the 
national maritime.

That is why this article aims to show the behavior of CO2 in one of the main areas of coral reef coverage, San 
Andres Islands, which is located in the Seaflower Biosphere Reserve, and which houses 3% of the biodiversity 
of coral species and 33% of fish species, being one of the most diverse ecosystems in Colombia.

Materials and methods 

Study area 

The San Andres Islands Archipelago is located in the transition zone between the humid and dry tropics (12-
16 degrees’ latitude N. and 78-82 degrees’ latitude O.). Specifically, the island of San Andrés is 12.8 km long 
and 3 to 5 km wide, housing a diversity of marine ecosystems, the most relevant being coral reefs, prairie 
beds, sandy shorelines and, mangroves (16). The study area is shown in Figure I. 

Figure I. Study area. San Andrés Islas. 
Source: Authors, 2019.

The CO2 flux is conditioned by the thermodynamic relationships between the solubility of CO2 in seawater, 
the salinity of the environment, the differential of partial pressures of CO2 in the atmosphere and in the marine 
environment, and wind speed [17]. Among this group of variables, the action of the wind allows the interaction 
between the CO2 present in the atmosphere and the surface of some water, due to the action of the waves [18]. 
In this sense, the behavior of the CO2 flux [19] for the study area is defined from the expression (Equation 1). 

𝐹𝐶𝑂2 = 𝑘𝑆(𝑝𝐶𝑂2𝑎 − 𝑝𝐶𝑂2𝐴) (1)
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Where the CO2 flux (FCO2) is expressed in mmol /m2/day. Where pCO2a is the partial pressure of CO2 in the 
sea, pCO2A the partial pressure of CO2 in the atmosphere, S is the solubility of the gas and k is the rate of gas 
transfer [20].  

It is necessary to indicate that the CO2 flux values obtained through the previous one are negative when the 
ocean captures CO2 and therefore is a sink of this, and they become positive when the study area emits CO2 
product of ocean dynamics [21].  

Due to the logistical difficulty related to taking the in situ data of the oceanographic variables described in 
equation 1, each variable was decomposed into a set of physicochemical factors that can be determined from 
measurements made with remote perception [22]. 

In this way it has to be that k is a function of the sea surface temperature [23] according to the following 
expression (Equation 2): 

𝑘 = 𝑐𝑈10𝑚
𝑏 (

𝑆𝑐

660
)

−1/2

(2) 

Where U10 is the wind speed at 10 m/s, Sc is the Schmidt number, which is a function of the SST, and the 
coefficient c and b, which are empirically obtained values. 

The transfer speed of a gas, in this case CO2, can be estimated by the relationship between the wind speed and 
its influence on the transfer constant (k). In this way, it is possible to assume that k is proportional to Sc, which 
can be obtained from equation 3. 

𝑆𝑐 = 𝐴 − 𝐵 ∗ 𝑆𝑆𝑇 + 𝐶 ∗ 𝑆𝑆𝑇2𝐷 ∗ 𝑆𝑆𝑇2   (3) 

Thus, a third-order polynomial equation is established [24], which is based on the close dependence of 
Schmidt's number on sea surface temperature (SST) [25] for various gases present in the environment, and their 
behavior in fresh and marine water [26]. whose empirical coefficients are shown in table I. 

Table I. Empirical coefficients for the Smidt equation 

Gas A B C D 

O2 1953,4 128 3,9918 0,050091 

CH4 2039,2 120,31 3,4209 0,040437 

CO2 2073,1 125,62 3,6276 0,043219 

Source: adapted from: [26]

On the other hand, the second variable to consider is S, which depends mainly on temperature, pressure and 
salinity. According to the above, the variation in the solubility of CO2 is relatively low in relation to salinity, 
since this tends to be constant, while the variation in solubility is more influenced by the sea surface temperature 
[27], Therefore, the solubility of studies based on an adaptation of Henry's law and the Bunsen solubility 
coefficients [26], [28] were used, whose values can be seen in Table II: 

Finally, the differential between the partial pressures of CO2 on the sea surface and the atmosphere should be 
established, for which it is first proposed to calculate pCO2 (expressed in μatm) in the water from the SST [29] 
(Equation 4). 

𝑙𝑛[𝑝𝐶𝑂2 𝑎(10°𝐶)] = 𝐴 + 𝐵(𝑆𝑆𝑇) + 𝐶(𝑆𝑆𝑇)2 + 𝐷           (4) 

Where: A = 6.030; B = -0.06076; C = 0.0007021; D = 0.001655 
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Table II. Relationship between CO2 solubility in the marine environment and depth 

Depth (m) Temperature (°C) Concentration (Kmol/m3) Status CO2

0 20 0,033 Gas bubbles 

100 20 0,349 Gas bubbles 

200 19,5 0,663 Gas bubbles 

300 18,5 0,965 Gas bubbles 

400 13,5 1,412 Gas bubbles 

Source of consultation: Adapted from: [29]

In this sense, pCO2 (expressed in μatm) will be assumed as constant (350.0 μatm) due to the low variability of 
the partial pressure of CO2 [30]. 

Sea surface temperature (SST) data was downloaded from the Moderate-resolution Imaging Spectroradiometer 
(MODIS-AQUA) sensor [31] available at http://oceancolor.gsfc.nasa.gov/, with a spatial resolution of 4 km 
and a daily temporary resolution. 

On the other hand, wind speed data were obtained from The Modern-Era Retrospective analysis for Research 
and Applications version 2 (MERRA-2), a re-analysis of atmospheric data estimated by NASA with the 
Goddard Earth model Observing System Model, Version 5 (GEOS-5), where georeferenced wind speed 
information is obtained with a monthly temporal resolution and 1/8 degrees of spatial resolution, available from 
January 1980 to the present, available at The GES- DISC Interactive Online Visualization and Analysis 
Infrastructure (Giovanni) (https://giovanni.gsfc.nasa.gov/giovanni/), which processes climatological and 
oceanographic data [32] obtained from remote sensors administered by NASA. 

Finally, with the purpose of calculating CO2 for the San Andrés Islas maritime, 11 points of strategic 
importance were taken for tourism and fishing activities, and three control points (C), distributed in the coral 
reef of the Island of San Andres The geographical location of these points is shown in table III. 

Table III. Geographical points of CO2 interpolation 
Stations Latitude Y Longitude X 

German Point 12.600.177 -81.703.175

Pleasant Point 12.582.123 -81.682.857

San Andres Bay 12.569.665 -81.691.715

Old Point 12.554.411 -81.696.666

Genie Bay 12.535.598 -81.694.840

Sound Bay 12.513.976 -81.703.172

South End 12.473.041 -81.730.520

Cove Seaside 12.521.360 -81.738.980

Sukey Bay 12.537.376 -81.742.630

Evans Point 12.557.715 -81.741.329

Low Bight 12.576.530 -81.728.567

C1 12.599.414 -81.681.677

C2 12.570.436 -81.672.815

C3 12.549.326 -81.676.473

Source: Authors, 2019. 
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Results and Discussion 

The behavior of the SST obtained from the MODIS sensor data is shown in Figure II.

Figure II. Sea surface temperature (° C) for the Colombian Caribbean between January and June 2019. 
Source: Authors, 2019.

Figure II shows the dynamics of SST between January and June 2019, showing oscillations between 24 and 31 
° C for this time of year. It can be seen on the maps that the area where San Andrés Islas is located presented an 
SST of ± 24.5 ° C, with March to April showing average values of 32 and 33 ° C, which is shown in figure III. 

Figure III. Sea surface temperature (° C) for the San Andrés Islas maritime between January and June 2019. 
Source: Authors, 2019. 
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In the case of the study area, that is, the San Andrés Islas maritime, it was observed that the surface temperature 
ranges of the sea did not showconsiderable variation. The oscillation of the surface temperature of the sea 
oscillated between 24 and 35 ° C, being the months of April and May the ones that showed higher temperatures, 
which conditions the CO2 flux to the marine environment. 

On the other hand, Figure IV shows the wind speed map (U10) obtained from the re-analysis with the MERRA 
model for the Colombian Caribbean. 

Figure IV. Wind speed (U) over the sea surface for the Colombian Caribbean between January and June 2019. 
Source: Authors, 2019. 

In the same way, in figure V, the wind speed map (U10) obtained from the re-analysis with the MERRA model 
for the sanctuary of San Andres Islands between January and June 2019 is shown. 

.

Figure V. Wind speed (U) over the surface of the San Andrés Islas maritime between January and June 2019. 
Source: Authors, 2019. 
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From ArcGis 10.3, the satellite image information for the SST and U variables was extracted, and with the 
georeferenced values for the months between January and June 2019, CO2 flux calculations were made using 
equation 1 The georeferenced data of the CO2 flux is shown in Figure VI.. 

Figure VI. CO2 flux (mmol / m2 / day) over the sea surface for the Colombian Caribbean between January and June 2019. 
Source: Authors, 2019.

Figure VI shows that the Colombian Caribbean is not a considerable CO2 sink, at least for the selected period 
of time. In this sense, the average values of CO2 flux were in the range between 398 and 495ppm in the ocean-
atmosphere direction, which would be showing that the occurrence of severe acidification phenomena for the 
Colombian Caribbean seafaring is despised. Despite this, it is necessary to carry out validations of the satellite 
data, as this would provide greater reliability to CO2 determinations through remote sensing techniques. 

For the specific case of the San Andrés Islas maritime, little variability of the CO2 flux was observed, based on 
the average estimate derived from equation 1, is shown in table IV. 

Table IV. Estimates of CO2 flux from wind and sea surface temperature data 
Estaciones SST Ene_Feb SST Mar_Abr SST Abr_May SST_May-Jun 

German Point 26,5 25,7 27,8 28,5 

Pleasant Point 27,7 27 28,3 29 

San Andres Bay 28,4 26,4 28,4 27,5 

Old Point 27,3 28,5 26,7 26,8 

Genie Bay 28 24,4 24,4 27 

Sound Bay 26,3 26,3 32,3 28 

South End 25 27,8 34,1 29 

Cove Seaside 27 24,3 28,9 28,5 

Sukey Bay 25,4 28,4 27,9 27,5 

Evans Point 27,3 29,3 28 28,5 

Low Bight 28,3 26,3 27,4 26 

C1 26,7 24 30,1 24,7 

C2 27 24,7 28,8 25 

23



CO2 flux behavior in the maritorium of San Andres Islands on 2019 

Respuestas, vol. 25, no. 3, pp. 17-28, 2020, ISSN: 0122-820X - E ISSN: 2422-5053 

C3 27,9 25,5 29,5 26 

Estaciones Wind Ene_Feb WindMar_Abr WindAbr_May Wind_May-Jun 

German Point 2,5 3 3,5 4 

Pleasant Point 3 3,5 4 4,5 

San Andres Bay 3,5 4 4,5 5 

Old Point 4 4,5 5 5,5 

Genie Bay 4,5 5 5,5 6 

Sound Bay 5 5,5 6 6,5 

South End 5 5,5 6 6,5 

Cove Seaside 5,5 5 5,5 6 

Sukey Bay 8 8,5 9 9,5 

Evans Point 8,5 9 9,5 10 

Low Bight 9 9,5 10 10,5 

C1 14 14,5 15 15,5 

C2 13,5 13 12 12,5 

C3 13 12 12,5 13 

Estaciones CO2 Ene_Feb CO2 Mar_Abr CO2 Abr_May CO2 _May-Jun 

German Point 390 385 380 400 

Pleasant Point 350 345 340 360 

San Andres Bay 365 360 355 375 

Old Point 370 365 360 380 

Genie Bay 380 375 370 390 

Sound Bay 387 382 377 397 

South End 390 385 380 400 

Cove Seaside 405 400 395 415 

Sukey Bay 400 395 390 410 

Evans Point 395 390 385 405 

Low Bight 380 375 370 390 

C1 390 385 380 400 

C2 385 380 375 395 

C3 380 375 370 390 

Source: Authors, 2019. 

From the values of sea surface temperature and wind speed for the sampling points, the interpolation of the 
CO2 flux was obtained, whose ranges are shown in Figure VII. 
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Figure VII. CO2 flux (mmol / m2 / day) over the sea surface for the San Andres Islands maritime between January and June 2019.
Source: Authors, 2019. 

Conclusions 

From the estimation of the CO2 flux for the San Andrés Islas maritime, it can be said that it does not assume a 
significant sink trend, since the values for the selected study period were always negative, whose oscillation 
was between 390 and 405 mmol / m2 / day approximately, discarding considerable acidification processes per 
CO2 account. 

This tendency in the behavior of the CO2 flow positively favors the survival of the coral structures present in 
the Seaflower reserve, since there is no considerable threat due to the alteration in the process of 
bioaccumulation of calcium carbonate, the main precursor to coral reefs. 

On the other hand, the impact of the CO2 flux on the abundance and distribution of ichthyo fauna is uncertain, 
mainly of those species of commercial interest for the San Andres Islands root communities. 
Finally, it is necessary to strengthen the research processes around the behavior of CO2 and its impact on the 
marine and coastal ecosystems of the Colombian Caribbean maritime. 
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