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RESUMEN
A pesar de que existe información técnica sobre la eficiencia de las tecnologías avanzadas de 
oxidación (TAOs) a nivel de laboratorio, en algunos casos a nivel piloto y pocos a gran escala, no 
es fácil hacer una selección de la tecnología más apropiada para un efluente en particular, puesto 
que la selección de la tecnología depende de las características del agua contaminada. A través 
de la aplicación de la técnica de análisis multicriterio, este artículo propone una escala de TAOs 
para el tratamiento complementario de aguas contaminadas con CE. Las alternativas elegidas 
fueron las tecnologías con aplicación de peróxido (H2O2), Ozono (O3) y procesos Fenton (Fe/
H2O2), los criterios de evaluación fueron consumo de energía eléctrica (EEO, por sus siglas en 
inglés) nivel de madurez tecnológica, complejidad del diseño/operación y costo de operación. La 
tecnología avanzada de oxidación más recomendada por el AHP es el ozono y el péroxido/UV 
con una diferencia de 8.6% en la frecuencia en la evaluación de los criterios. Para la metodología 
AHP-TOPSIS, el peróxido/UV es la tecnología clave sobre el ozono con una diferencia de 31,4 % 
en la frecuencia de la selección.
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ABSTRACT

Although there is technical information on the efficiency of Advanced Oxidation Technologies 
(TAOs) at the laboratory level, in some cases at the pilot level and few on a large scale, it is 
not easy to make a selection of the most appropriate technology for effluent in particular, since 
the choice of technology depends on the characteristics of the contaminated water. Through 
the application of the multi-criteria analysis technique, this article proposes a scale of TAOs 
for the complementary treatment of water contaminated with CE. The alternatives chosen 
were technologies with peroxide application (H2O2), Ozone (O3) and Fenton processes (Fe/
H2O2), the evaluation criteria were electrical energy consumption (EEO) level of technological 
maturity, complexity of design / operation and cost of operation.  The advanced oxidation 
technology most recommended by the AHP is ozone and peroxide / UV with a difference of 
8.6% in the frequency in the evaluation of the criteria. For the AHP-TOPSIS methodology, 
peroxide / UV is the key technology over ozone with a 31.4% difference in the frequency of 
selection.
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Introduction

At present, conventional treatments for water purification 
and wastewater treatment in Colombian cities are 
inadequate for a large number of new organic and 
inorganic pollutants, produced both by industrial 
activities and by the daily life of human beings [1]. These 
substances can have a high toxic potential, which carries 
a risk to ecosystems and human health, for which they 
have been classified by the authorities of countries of the 
European Union, USA and Australia with the name of 
Emerging Contaminants or Contaminants of concern 
emerging (EC) [2].

In recent years, advanced oxidation technologies 
(TAOs) have shown their effectiveness in the treatment 
(degradation and mineralization) of this type of 
pollutants and their derivatives; The literature shows that 
results at the laboratory, pilot-scale, and in some cases 
large scale are promising in the treatment of this class 
of substances [3]. Therefore, in the short and medium-
term, it is expected to be implemented in the sector of 
basic sanitation of domestic water and the treatment of 
industrial wastewater since the concern about the effects 
of these pollutants will raise new goals in environmental 
legislation in the world [4] - [6].

For the implementation of new technologies and / or 
processes in water treatment, it is necessary to evaluate 
multiple technical, environmental, social, and economic 
factors, for this reason, selection methods are required 
that allow taking into account the relationships between 
the variables that are identified as important criteria for 
making a decision [7].

Multi-criteria Analysis (MCDA) is a tool that in recent 
years has taken a boom in the analysis of information, 
for decision-making and the development and 
implementation of engineering projects, as it allows 
obtaining qualitative and quantitative relationships 
between technical variables, economic, environmental 
and social that were not previously taken into account 
when selecting a certain technology [8], [9].

Few publications have been found that relate the use of 
multi-criteria tools for the selection and evaluation of 
TAOs [8] - [11] and these reports show that the studies 
carried out using this tool on TAOs require a high degree 

of specificity.

The MCDA has been used to evaluate various decisions, 
in the case of the selection of TAOs for the treatment 
of CE in real wastewater, reports have been found that 
collect different criteria and factors, which depend on 
the very purpose of the selection; In addition to technical 
factors, economic, environmental and social factors are 
involved to establish rankings of technologies. The most 
important results in the application of the MCDA in this 
class of technologies are presented below.

Teodosiu et al. 2018 [12] presents a complete review 
on the selection of technologies for the treatment of 
emerging pollutants with special emphasis on pilot plants 
and industrial-scale units, taking into account technical, 
economic, and environmental aspects, as well as data on 
occurrence, and effects on health. An excellent review is 
made on aspects of the analysis of decision tools and life 
cycle analysis

Fast et al. 2017 [7] present a critical evaluation of TAOs 
in the treatment of EC, with data from the literature 
and a holistic analysis of the processes, propose the use 
of engineering, environmental, social, and economic 
parameters and establish a ranking of technologies for 
the treatment of CE. The list in descending order is: 
H2O2/O3, O3, O3/UV, H2O2/UV, Fe/H2O2 (FENTON) 
and TiO2.

Bui et al. 2016 [8] carry out a study of the application 
of TAOs in the treatment of pollutants on a large scale, 
they carry out a comparative study of TAOs with other 
technologies (adsorption, membrane reactors) from 
a technical, legislative, and economic point of view. 
The use of coupled technologies is proposed due to the 
complexity of the problem and they follow the use of 
adsorption with activated carbon and ozone as the most 
accessible and fastest implementation methodology.

Meng, Zhu, and Yu [13] report the use of MCDA 
analysis to establish a classification of 36 pollutants and 
thus establish relations with the EC of the official list of 
China and thus establish a response to emergencies due 
to contamination.

Sudhakaran, Lattemann, and Amy [10], present a 
MCDA study for water purification, they use weightings 



Respuestas, 25 (2), pp. 16-27, 2020,  ISSN 0122-820X - E ISSN: 2422-5053 18

Multi-criteria analysis for the selection of advanced oxidation technologies in the treatment of emerging pollutants

of the factors and criteria based on the opinion of experts 
from academia, the productive sector, and companies in 
the sector. In addition to the technical-economic criteria, 
they involve the carbon footprint as a parameter for 
comparing technologies. According to the weightings 
used, it is estimated that the combination of technologies 
is the best option for the treatment of water contaminated 
with EC.

Meng, Qu, and Yu [14] present a study for the selection 
of technologies for the treatment of wastewater from the 
paper industry. The study proposes the use of four 
criteria, the effect of the process, cost-benefit ratio, 
processing time, and sustainability; ten indices were 
established by AHP according to the availability of 
techniques in the region.

In this work, a methodology is proposed for the 
classification of advanced oxidation technologies that can 
be used according to the type of emerging compounds 
present in wastewater through the use of multi-criteria 
analysis techniques.

Methodology

AHP methodology. It is a decision technique proposed 
by T.L. Saaty (1977, 1980) who use a hierarchical 
structure prioritizes the alternatives of a problem based on 
a series of criteria or variables, making pairwise 
comparisons of elements of the same level of the 
hierarchy concerning each criterion of the higher 
level, this methodology It is used to solve problems in 
which there is a need to prioritize different options and 
later decide which is the most convenient option [15]. 
The general process of the AHP model is:

1. Establish a decision hierarchy. In this, the goal or
objective to be achieved is located at the highest level, At
the next level in descending order, the criteria and sub-
criteria in which the decision-maker justifies transforms
and argues their preferences, finally at the last level of the
hierarchy the alternatives are located, which are the set
of possible options defined on which the decision will be
made (Figure 6.1.).

2. Peer comparisons. This analytical process uses
binary comparisons through the use of matrix theory,
establishing priorities between the elements of one level,
with respect to an element of the next higher level. Trials

can be guided by scientific and technical information, 
and that given by the experience and knowledge of the 
decision-making group. Each person expresses their 
opinion, assigning a numerical value that measures the 
intensity of the opinion. 

The AHP compares n elements, C1 ... Cn, denoting 
the relative weight (priority or significance) of Ci with 
respect to Cj for the reason aij. Such comparisons are 
located in a square matrix of order n that must meet 
certain restrictions: aij = 1 / aji, for i different from j and 
aii = 1 for all i. Such a matrix is a reciprocal matrix. With 
these values, the necessary matrices must be generated 
to perform the pair-by-pair comparisons of the different 
levels of the defined hierarchy. 

3. Matrix consistency. Its consistency index IC (own)
is compared with the consistency index of a reciprocal
matrix of the same order whose elements have been
randomly determined. This value is called a random index 
RI and its values are previously determined according to
the order of each matrix.

4. Determine the overall priority order of the alternatives.
After determining the priority of the elements of each
level, the weighted sum method is applied, calculating
the total priorities associated with each alternative, which
represent their importance with respect to the goal. [16].

Model AHP-TOPSIS.  It is the combination of the AHP 
and TOPSIS methods that, in this case, allows evaluating 
the alternatives according to the bibliographic data found 
of these, the use of the AHP method allows establishing 
the level of importance that the criteria of the alternatives 
will have in the making of decision combining with the 
TOPSIS technique that is used to order the alternatives 
and prioritize them.

The TOPSIS method consists of the comparison of 
alternatives, facing the dilemma of working under the 
premise of the ideal alternative, with the anti-ideal, or 
with a mixture of the two. The general process of the 
TOPSIS model is:

1. Construction of the decision matrix: This matrix
contains the alternatives that will be evaluated based on
the criteria and the vector of associated weights, which
in this case are those found by the AHP method, then the
matrix is normalized and weighted.
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2. Determine the ideal negative and positive solution.

3. Calculate distance measurements and relative 
proximity. 

Criteria to be evaluated for the selection of TAOs. MCDA studies for technology selection indicate a wide possibility of 
criteria and sub-criteria to be established. Table 1 shows the selection of technical criteria (with financial evaluations) 
evaluated under the same conditions and elaborated in the use of TAOs, based on the information available in the 
treatment of EC in real waters. 

Table 1. Technical criteria for selection of TAOs in real water treatment.

As can be seen, the technical criteria and operating costs 
are key to determining the possibility of implementing 
technology on an industrial scale and therefore achieving 
its implementation in real waters. [17] - [25].

The criteria selected for the evaluation of 
TAOs are described below, as a first 
approximation in the establishment of a selection 
scale from the technical point of view, operating 
costs, and degree of maturity.

Electric Power Consumption - EEO (kWh/m3). This 
parameter is defined as the electrical energy consumption 
in KWh required to degrade a pollutant by an order of 
magnitude in a cubic meter of water. It is widely used for 
the comparison of technologies as it takes into account 
the energy consumption for low concentration pollutants 
such as emerging pollutants [26] - [30].

Operation cost. This parameter takes into account the 
costs associated with the consumption of chemicals 
associated with each of the processes and which are 
decisive in the feasibility of applying OATs [31].

Plant Design / Operation Complexity. This parameter 
is related to the ease of implementation of TAOs at 
different scales. Heuristic rules are used to determine 
the high value. the medium or low complexity of 
plant operation and unit operation [32], [33].

Technological Maturity Level (TRL). The Technological 

Maturity Level or TRL (Technology Readiness Level) 
for its acronym in English is one of the methodologies to 
know the implementation status and the scale of use of a 
technology [34], [35].  There are not many reports of the 
use of this parameter in the selection of TAOs, but it is 
well known that both Ozone and UV-based technologies 
have a high TRL compared to emerging technologies 
such as photo catalysis. Thus, this parameter allows 
establishing viable application options in a given period 
of time  [36], [37].

Results and Discussion

AHP analysis development

As a result of the development of the AHP analysis, the 
criteria weights were found through 14 surveys conducted 
with experts (university researchers, industry engineers) 
with extensive experience in TAOs and the application 
of wastewater treatments, surveys, and profiles of the 
respondents are in Annex 2. A matrix is developed with 
the geometric averages of the experts' opinion (Table 2) 
and the iterations of this matrix for each criterion result 
in the criteria's priority eigenvector (Table 3).
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Table 2. Matrix resulting from expert opinion.

Table 3. Expert matrix eigenvector

The matrix of experts shows that energy costs and operating costs are decisive for the selection of technologies, this 
is to be expected since these aspects determine the feasibility of implementing a new technology [38]–[40]. On the 
other hand, technological maturity is a new criterion used for the selection of TAOs and very little has been reported 
so far [41] - [43]

The development of the prioritization matrix of the alternatives was developed with the values found in the literature 
normalized and iterated by each of the alternatives, Table 4, thus resulting in the prioritization of the TAOs.

According to the results, ozone is the most recommended technology with 47%, followed by peroxide with 35% and 
finally Fenton with 18%. These results could be following what was stated by some researchers who recommend this 
type of technology for water treatment [44][26][45] [46].

Table 4. Result matrix of alternatives, criteria vector and solution
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Development of the AHP-TOPSIS Analysis

The development of the AHP-TOPSIS method was carried out using the criteria prioritization vector produced by 
the AHP method developed with the expert surveys (Table 5.), also, the values reported in the literature were used, 
which were normalized as shown in Table 5 and weighted to find the positive and negative solution vectors to find the 
distances to the solutions and the solution vector Ri (Table 6.).

Table 5. Normalized criteria matrix

Table 6. Solution of TAOs priorities

Sensitivity Analysis:  To determine the stability of the solution, a sensitivity analysis is performed for both 
methodologies, varying the starting conditions by modifying the weights of the criteria with 35 different scenarios 
(Table 7).

Table 7. Evaluation scenarios for the sensitivity análisis

AHP methodology analysis.  The 35 scenarios are evaluated by repeating the steps, the main result continues to 
be ozone technology as the first alternative to be used in water treatment. This can be observed by reviewing the 
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frequency with which this technology is repeated in the first place of the 35 scenarios.  

Table 8 shows the results of all the scenarios and the last column of this shows the frequency with which each of the 
treatments is presented in the first place of the prioritization columns, thus ozone with a percentage of 54.3% followed 
by Peroxide which ranked first at 45.7% and Fenton with 0%.

Table 8. Results of the scenarios for AHP.

AHP-TOPSIS methodology analysis.  The 35 scenarios were evaluated, in this case, the peroxide / UV technology 
occupies the first place with a 65.7% frequency followed by ozone with 34.3% and Fenton with 0%. (Table 9).
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Table 9. Results of the scenarios for AHP-TOPSIS

Conclusions

Technologies based on the use of ozone and peroxide / UV are classified by the MCDA methods as appropriate 
technologies for the treatment of wastewater.

The advanced oxidation technology most recommended by the AHP is ozone and peroxide / UV with a difference of 
8.6% in the frequency in the evaluation of the criteria

For the AHP-TOPSIS methodology, peroxide / UV is the key technology over ozone with a 31.4% difference in the 
frequency of selection.
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The Fenton process is not the best option under the 
criteria evaluated by both AHP and AHP-TOPSIS

The use of the criterion of technological maturity in 
the evaluation of technologies is constituted as a new 
indicator in the multi-criteria analyzes used to classify 
TAOs.
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