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ABSTRACT
This paper describes the combination of statistical techniques and mathematical modeling in 
order to developed a fault detection system in a 2 MW natural gas engine under actual operation 
conditions. The Mixing chamber, turbochargers, intake and exhaust manifolds, cylinders, throttle 
and bypass valves, and the electric generator, which are the main components of the gas engine, 
were studied under a mean value engine to complement the statistical analysis. Objective: The main 
objective of this paper is to integrate two approaches in order to relate the faults with the changes 
of mean thermodynamic values of the system, helping to sustain the engine in optimal operating 
conditions in terms of reliability. The Principal Component Analysis (PCA), a multivariate 
statistical fault detection technique, was used to analyze the historical data from the gas engine to 
detect abnormal operation conditions, by means of statistical measures such as Square Prediction 
Error (SPE) and T2. These abnormal operation conditions are categorized using cluster techniques 
and contributions plots, to later examine its causes with the support of the results of a mean value 
mathematical model proposed for the system. The integration of the proposed methods allowed 
successfully identify which component or components of the engine might be malfunctioning. 
Once combined, these two methods were able to accurately predict and identify faults as well as 
shut downs of the gas engine during a month of operation. Statistical analysis was used to detect 
faults on a 2 MW industrial gas engine, also the result were compared with a mean value model in 
order to detect variations of the thermodynamic properties of the system at abnormal conditions.
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Introduction 

With the continuous technological progress and growth 
of society, the demand for energy has increased, more 
specifically the consumption of electrical energy; which 
has motivated the development of different renewable 
energy sources such as wind and solar energy, among 
others [1], [2]. In these processes, due to their complexity, 
they are increasingly exposed to a malfunction of some 
component of these processes, which could cause danger 
to operators, economic losses, among other external 
factors, so it must be ensured that these security systems 
must have excellent reliability.

To ensure that the operation of any process is correct, 
there must be a set of actions that must comply with three 
fundamental stages, failure detection, diagnosis and 
restoration of operating conditions as specified by the 
process, ie process monitoring and is applicable to any 
application [3], [4]. The industry has adopted methods 
and procedures that have allowed to automatically detect 
failures in generation and electric motors, extending 
their life cycle, improving their safety and providing 
financial savings [5], [6], these methods are based on 
the identification of highly probabilistic parameters, 
calculation of equations, estimation of state variables and 
multivalent statistical methods that help to determine 

the causes of failure [7], [8] and other classical methods 
used is the rule of diffuse equations or neural network 
approaches [9], [10]. In general, the traditional methods 
of failure detection and diagnosis are based on dynamic 
and mathematical models [11], [12], having important 
aspects in failure detection as the expertise of the system 
operator and knowing the functions of the individual 
components and their respective connections, qualitative 
and/or quantitative in the process of nominal operation 
against abnormal operation, in relation to the presence of 
an abnormal event or called failure [13] in a machine, for 
example an engine, can influence its operation, efficiency 
and even the interruption of the main functions in the 
process [14].

Different methodologies [15], [16] have been developed 
to standardize the failure detection process, aiming at 
a repetitive cycle of Failure Detection-Identification-
Diagnosis. This cycle corresponds to a global analysis of 
analysis and failure detection [17] in a system or process 
in order to standardize terms and procedures for failure 
diagnosis, which are usually based on models obtained 
with widely studied methodologies [18] - [20]. Some of 
these failure detection methods involve statistical methods 
for diagnosis, such as principal component analysis (PCA) 
[21], which is a powerful multivariate statistical method 
that has been successfully used to monitor and identify 
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RESUMEN
Este artículo describe la combinación de técnicas estadísticas y modelos matemáticos para 
desarrollar un sistema de detección de fallas en un motor de gas natural de 2 MW bajo condiciones 
reales de operación. La cámara de mezcla, los turbocompresores, los múltiples de admisión y 
escape, los cilindros, las válvulas throttle, bypass y el generador eléctrico, que son los principales 
componentes del motor de gas, fueron estudiados bajo un motor de valor medio para complementar 
el análisis estadístico. El objetivo principal de este trabajo es integrar dos enfoques para relacionar 
los fallos con los cambios de los valores medios termodinámicos del sistema, ayudando a 
mantener el motor en condiciones óptimas de funcionamiento en términos de confiabilidad. El 
Análisis de Componentes Principales (PCA), una técnica estadística multivariante de detección 
de fallas, se utilizó para analizar los datos históricos del motor a gas para detectar condiciones 
anormales de operación, por medio de indicadores estadísticos tales como el Error de Predicción 
Cuadrado (SPE) y T2. Estas condiciones anormales de operación se categorizan mediante técnicas 
de clústeres y diagramas de contribuciones, para luego examinar sus causas con el apoyo de los 
resultados de un modelo matemático de valor medio propuesto para el sistema. La integración de 
los métodos propuestos permitió identificar satisfactoriamente qué componente o componentes 
del motor podrían estar funcionando mal. Una vez combinados, estos dos métodos fueron capaces 
de predecir e identificar con precisión las fallas, así como las paradas del motor de gas durante un 
mes de funcionamiento. Se utilizó el análisis estadístico para detectar fallas en un motor de gas 
industrial de 2 MW, también se comparó el resultado con un modelo de valor medio para detectar 
variaciones de las propiedades termodinámicas del sistema en condiciones anormales.
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abnormal dynamic operating conditions [22] - [24]. The 
above method is based on two statistical hypothesis tests: 
Hotelling's T2 and SPE, in order to determine when a 
failure occurs, but the causes are not known. Generally, 
contribution charts are used as a diagnostic tool in process 
monitoring [25]. Applications of the method have been 
made, where an algorithm of identification of the root 
cause of future failures based on PCA was proposed in 
order to help predictive maintenance [26], such as using 
the method for the reconstruction of variables between 
correlated sensors, proposing an indicator to determine 
the state of the sensors [27]. Studies have also been 
carried out to improve the failure detection technique by 
combining the PCA method with other methods [28]. The 
integration of PCA with experts has also given very good 
results [29], [30].

The main contribution of the research is the application 
of the principal component analysis (PCA) failure 
detection method to a generation engine, with the help of 
mathematical equations and a phenomenologically based 
semi-physical model, using the MATLAB simulation 
program to do so.

Materials and methods

PCA method

Consider a data set consisting of observation variables 
and observations for each of the variables, which is 
arranged in a matrix arrangement X0 ϵ Rn*m as shown 
below:

The X_0 matrix must be normalized or standardized in 
such a way as to allow analysis without a tendency to the 
units of each m. Normalizing consists in subtracting from 
each m or variable the corresponding mean by dividing it 
by its respective standard deviation if  d ϵ Rm is defined 
as the "vector of means", a column vector containing the 
means of the variables, which can be calculated by means 
of equations 2 and 3.

And the standard deviations of the variables in a diagonal 
matrix as shown in equation 4.

Then data normalization can be carried out as follows:

The covariance matrix is now defined as follows:

A spectral decomposition of S is then performed, so that

where V corresponds to the goblet matrix Λ ϵ Rm*m  is 
the diagonal of the matrix containing the diagonal as 
recommended by Zwick and Velicer [31].

The projection y= VT x  of an observation vector x= ϵ Rm 
converts the observation space into a set of uncorrelated 
variables corresponding to the elements of y. The 
variance of the i=th y-element is equal to the i=th self 
value in the matrix Λ. Knowing that S is invertible (since 
it is a symmetrical matrix) and with the definition:

z= Λ-1/2  V T x        (9)

the Hotelling statistic T^2  is given by the following con-
ditions. Define a matrix D ϵ Rm*m, such that:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)
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Λ=DT D         (10)

this matrix coincides with the diagonal matrix corres-
ponding to the decomposition into singular values of                                                                                                                                               
                  X as shown in equation 11.

If D_a is now defined Da ϵ Rm*a as the matrix containing 
the first rows and columns of D, then Hotelling's T^2 for 
the smallest space is shown in equation 12.

T2=xT PDa
-2 PT x      (12)

and the detection threshold δT
2  for the T2 statistic is 

defined by

The observations corresponding to the (m-a) self values 
which can be monitored by the Q statistic also known as 
SPE (Squared Prediction Error) as shown in equation 14.

Q= rT r   (14)

where r is calculated as shown in equation 15.

r=(I-PPT )x  (15)

The detection threshold for the Q statistic is given by 
equation 16.

where,

and ca is the standard deviation for a given a of trust (1-a).

Engine description

Since the selected equipment is an engine, it must be 
defined as a set of process systems, where the operational 
behavior of the equipment can be simulated through 
mathematical equations, obtaining a phenomenologically 
based semi-physical model that can be used to perform 
experiments in simulations [32], [33]. With this, it is 
shown the process of a phenomenologically based semi-
physical model of the air line of a 2 MW generation 
engine operating with natural gas, a compression ratio of 
10.5, which has a cylinder capacity of 74.852 liters, has 12 
V cylinders at 60°, the stroke length is 220 millimeters, 
the chamber diameter is 190 millimeters, the maximum 
torque it reaches is 60.66 kN*m, the maximum power it 
can reach is 1820 kW at a nominal speed of 1500 rpm. 
This engine has a three-phase electric generator at a 
frequency of 60 Hz, a power factor of 0.9% delivering a 
reactive power of 911 kvar, electric power 1975 kW and 
apparent power of 2177 kva, having an average voltage 
between lines of 13,264 V.

The beginning of the air line process starts in the mixer 
where, at a temperature between 30°C and 40°C, an 
atmospheric pressure of 1,007 bar and relative humidity of 
75-85%, aspiration air and natural gas are mixed, shown 
in Figure 1. The above mentioned mixture is made at a 
line pressure between 1,152 and 1,211 bar and volumetric 
ratio between 110-140 L/s, with the purpose of an optimal 
flammable gas-air mixture and obtaining an air/fuel ratio 
between 1.4 and 1.8. The fuel composition is a methane 
with number 92.1 with Nitrogen (1.50), Carbon dioxide 
(0.16), with a calorific value of 2085.1 BTU/lbm.

Figure 1. General flow chart for the engine generator system.

(11)

(13)

(16)

(17)

(18)
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The gas-air mixture exits the mixer and then enters 
the compressor wheels belonging to the two turbo-
compressors operating in parallel, sucking in the mixture, 
increasing the pressure by 3 to 5 bars and the temperature. 
After leaving the turbo-compressors, the gas-air mixture 
enters the engine suction chamber, passing through the 
mixture cooler, a mixture/water exchanger to reduce its 
temperature and then passing through the check valve 
to regulate the mixture's passage [34], according to its 
position, into the suction chamber of the crankcase, place 
in which there is a pre-chamber to make combustion 
and thus, to achieve homogeneity of the reaction, which 
is complemented with the combustion in case a new 
injection of a secondary fuel is required, generating exit 
gases in each cylinder, where the mixture is distributed 
to the 12 cylinders, with a mixture temperature between 
60°C and 70°C and pressure load of 2. 6 to 4.6 bar. With 
this, it is monitored and ready to send warnings when the 
mixture temperature is 71.1°C and failures are generated 
when it exceeds a temperature of 75°C. 

The flow of the mixture can be regulated by the check 
valve, or throttle valve, and the turbo bypass valve, which 
recirculates the mixture leaving the mixer by regulating 
the engine power between 1000 kW to 1979 kW, each 
taking percentage openings depending on engine 
operating mode, which could be for the throttle valve 
80% in mains independent operation or 98% in parallel 
operation with the mains and for the turbo bypass valve 
in turn, can take values between 15% to 50% independent 
of operating mode.

At the end of the process, the exhaust gases from the 
pre-combustion before the cylinders, which in each 
cylinder come out at temperatures between 580°C and 
650°C and from the mixture that comes out in the rest 
of the cylinders, are mixed in a single outlet, having a 
concentration of gases that at the minimum load of 1000 
kW with a compression ratio of 1. 78 and maximum 
load of 1882 kW with a compression ratio of 1.97, it is 
understood that O2 will have between 9.45% to 10.52%, 
731-588 mg/m3 of CO, 461-468 mg/m3 of NOx, 317-368 
mg/m3 of NO2 and 95 to 65 mg/m3 of NO.

Engine modeling

As part of the methodology, it is necessary to know the 
modeling of the engine made by a semi-physical model 

of phenomenological basis, to evaluate by the method 
failure detection. Considering the objectives defined for 
the model, the mass and energy conservation balances 
have been applied to the study of the subsystems of 
interest in the engine, taking into account the following 
considerations:

The chamber and manifolds are considered as thermal 
energy reservoirs, with output properties equal to those 
of the control volume [35].

The two turbocharger systems and the cooler system are 
unified into a single system, which will be modeled as a 
single exhaust expansion stage and a single compression 
stage in the intake line.

One cylinder is studied and it is assumed that its behavior 
is the same for the others, where the exit properties of the 
gases will be equal to those of the control volume.

In the model proposed for the engine, each component is 
represented as a subsystem delimited by a fixed boundary 
as shown in Figure 2, where the mass and energy flows of 
each component are shown, where the mixing chamber, 
turbochargers, intake and exhaust manifolds, cylinders, 
throttle and bypass valves, and the electric generator 
stand out.

Figure 2. General flow chart for the engine generator system.

To find temperature 6, energy balances and replacements 
have been made suitable to express this in terms of 
temperature 1 (T1) and the reference temperature 
(Tref) expressed in equation (12), where η_comp is the 
compressor efficiency, λ(t) AFR is the time dependent 
air-fuel ratio, d1=3. 81451579330654 1, Vgas0 is the 
volumetric flow rate of the gas, d2=49.9931450207536, 
ρaire0 air density, Rgas0 is the particular constant of the 
gas at 0, and Raire0 is the particular constant of the air 
at 0.
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Results and Discussion

More than 80,000 samples were taken for analysis, but 
the focus will be on the first thousand data, where, taking 
a minimum value where the engine performance is 
considered normal from the T2 statistics, an abnormality 
is presented from the 600 samples, where they exceed the 
safe limit and abnormality alarms are generated. When 
passing 1000 samples, a turning point is presented, 
where it goes down to the limit and takes T2 values of 
100 and from 3000 to 6000 samples present constant 
abnormalities reaching maximum values of 150 and 
between 7000 and 8000 samples present an abnormality 
of more than 200, presenting the highest abnormality in 
this sample. With these values it is not really shown if there 
is a failure, breakdown or malfunction of the equipment, 
but it is shown that it is not working at its normal values. 
In the Q statistics, it shows the traces of the abnormalities 
presented in the graph of the T2 statistics, taking values 
above the Q limit, presenting abnormalities in the 1200 
sample, and constantly manifesting between the 2000 
and 3000 sample, which is repeated in the 5000 and 6000 
sample and shows its highest peak between the 7000 and 
8000 samples, demonstrating the highest abnormality, as 
shown in Figure 3.

Figure 3. Response of standardized statistics

The sampling shown in figure 4, shows the behavior of 
the variables, showing in the variable 13, referring to the 
gas pressure, the one that presents abnormalities from 
the first 10 samples and generating critical values from 
sample 400.

where,

and the constants are equal to

To find pressure 6, take the energy and mass balances 
and leave the values in terms of the flow densities 5 and 6 
shown in equation 13, where ρaire6 is the air density at 6, 
ρgas6 is the air density 6, ρ_air5 is the air density at point 
5, ρgas5es is the gas density at point 5, A5 is the area of 
step 5, A6 is the area of step 6.

To know the values of the electrical power during time, 
we used the replacement that was made in equation 12 
and found the electrical power in terms of temperature 1 
(T1) and pressure 6 (P6), where d3=7.09033537747266, 
d4=414.758117465621 and d5=252.199816376828, as 
shown in equation 22.

The volumetric efficiency was found by taking into 
account the pressure 7 (P7) and temperature 7 (T7) that 
vary with time, using the motor RPM, shown in equation 
23.

(21)
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Figure 4. Behavior of variable 13

By graphing the eigenvalues with respect to the main 
components shown in Figure 5, it is shown that in the first 
4 main components 95% of the dimensionless variability 
of each of the variables in their respective observation 
is represented. This means that, by analyzing these four 
main components, the real behavior of all the observations 
of all the variables is shown.

Figure 5. Behaviour of the eigenvalues of the main components

Taking the equations from the engine modeling, they 
set out to analyze the engine output variables such as 
temperature and pressure during the samples taken to 
perform them. Taking into account the abnormalities 
shown in Figure 3, there are abnormalities in the variables 
analyzed in Figure 6, temperature 6 and pressure 6 
between samples 900 and 2600, where there are the raw 
abnormalities found. Temperature 6 presents a drop from 
66.5 °C to 65.3 °C between samples 1000 and 1500, as 
well as the second abnormality between 1500 and 1700, 
where the temperature is reduced to a minimum of 65 °C. 
Pressure 6 is affected by the first abnormality, dropping 
drastically from 4.5 bar to 3.3 bar and reaching again 

its value of 4.5 between samples 1200 and 1400, in the 
second abnormality where it drops drastically again to 
3.4 bar and in the remaining samples it remains at values 
between 3.7 and 4.0 bar.

Figure 6. Motor output variable diagram.

In Figure 7, the 3 remaining output variables to be 
analyzed are electrical W, volumetric efficiency and 
effective efficiency. As shown in Figure 6, the analysis 
between samples 900 and 2600 is also shown, where 
the first abnormalities occur. The electric W, when the 
first abnormality occurs, goes down from 1820 KW to 
1450 KW, where through the samples it is noticed that 
it recovers until the second abnormality where it goes 
down to 1460 KW and in the remaining samples it has 
a relatively stable behavior, having peaks between 1700 
KW and 7160 KW. The effective efficiency in the first 
abnormality drops from a constant 0.393 to 0.385 and 
as the samples advance, there is no greater eventuality, 
with its lowest peak at 0.382. The volumetric efficiency 
in the first abnormality shows an increase from 0.618 
to 0.623, where it remains intermittent between 
these values until the second abnormality where it 
shows an increase to its maximum peak of 0.625.
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Figure 7. Remaining output variables

Conclusion

The statistical method of principal component analysis 
was used to detect failures in a generating engine with 
the help of dynamic modeling of the engine using a 
phenomenologically based semi-physical model to detect 
abnormalities in engine performance and display early 
alarms. Thanks to the combination of these two methods 
it was possible to detect failures and identify main 
variables where the process could have a malfunction and 
possible improvements to the components that perform 
the process. With the help of statistical analysis, it is 
possible to predict and accurately determine the failures, 
as well as the time in which the equipment should be 
stopped during the evaluated time. Further investigation 
is possible by performing better investigation of 
techniques such as clustering or discriminant analysis in 
order to show better failure diagnosis and classification 
when multiple failures occur over a period of time.
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