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ABSTRACT
Mathematical models are used to describe the relationship between two or more variables or features over the target 
population. Statistically, Simple Linear regression model has been extensively applied and the properties of their 
estimators are well known. However, this kind of model is not correctly applied in most cases, such as a longitudinal 
setting. Linear mixed models (LMMs) are useful when the measurements have been done over a specific interval of time. 
One of the most important assumptions, on both models, has been established as that the model holds for the whole data. 
In latter case, we could find one or several points which the function changes into. This proposal allows us to estimate the 
points where the model changes by minimizing a specific risk function or a loss function associated with the fitted model.
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RESUMEN
Los modelos matemáticos han sido usados para describir la relación entre dos o más variables o características de la 
población objetivo. En el campo de la estadística el modelo de regresión lineal simple han sido aplicados ampliamente y 
sus propiedades son bien conocidas. Sin embargo, este tipo de modelos no tiene aplicación an algunos casos como en el 
escenario longitudinal. Los modelos lineales mixtos (LMMs) son de utilidad cuando las medidas han sido registradas en 
un intervalo de tiempo. Uno de los más importantes supuestos, para los dos modelos, ha sido el establecer que el modelo 
se mantiene invariante sobre todo el intervalo de regresión. En caso contrario, se puede encontrar uno o varios puntos de 
cambio en los cuales el modelo cambia (media, varianza o simultaneamente media - varianza). Esta propuesta permite 
estimar los puntos de cambio sujeto-específicos que permiten la minimización de una función de riesgo o pérdida asociada 
al modelo en mención.
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Introduction

Longitudinal data arises frequently in many applied 
sciences as agriculture, medicine, finances, among 
others. The term longitudinal suggests that data have 
been collected over time on the same unit which implies 
some structure of correlation for data. Some recognized 
authors have been worked on this topic Linear Mixed 
Models (LMMs) arises as an alternative to deal with 
residual correlation structures and the very usual pro- 
blem of unbalanced data. A lot of theory have been 
widely developed for this models under some important 
assumptions since Harville’s works [1, 2]. Fitting a model 
implies that it is correct for all the points of the regressor 
variable, however, this is not always true. Sometimes 
the model changes its mean or variance structure from a 

specific point.

Modeling and predicting is an interesting area which has 
been incorporated as one of the most powerful tools in 
data analysis. The regression analysis had been the most 
useful statistical technique for modeling the relationship 
between a dependent variable (response variable) and one 
or more independent variables (explanatory variables or 
predictors). This technique is a common method used in 
practice [3, 4].

Linear models and Linear Mixed Models

In a particular way, fitting a simple linear regression 
model (SLRM) implies to quantify the effect of the 
predictor (X) on the response variable (Y). This is done 
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through the estimation of the model parameters and 
a posterior residual analysis. After data are collected 
and the model is specified, the next step is to find the 
parameter estimations. The general statement for a SLR 
model is: Yi = α + βXi + εi, i = 1, 2, . . . , n (1) with 
εi~N (0, σ2) (i.i.d.) that corresponds the usual normality, 
independence and homoscedasticity assumptions 
about the random error and n is the number of paired 
observations. The estimators’ close expressions are 
well known and their properties, even when normality 
assumption fails,can be found at [5].

An extension from the model given by (1) is a Linear 
Mixed Model (LMM) due to the error component can 
be separated into two components the former a raw 
error component and the latter an explained error 
component. The second one contains information about 
the individual difference from the average model. An 
LMM is a parametric linear model for cross-sectional or 
longitudinal data. It quantifies the effect of explanatory 
variables on the response variable. This model allows 
that fixed and random effects can be estimated and 
predicted respectively. While fixed effects estimates 
give information about the relationship between a set 
of independent variables and the response, random 
effects are used in modeling the random variation in the 
dependent variable at different levels, clusters or subjects 
within a population ([6–8]). The general structure for an 
LMM is given by:

Yi=Xi β+Zi bi+εi  (2)
bi~N(0,D)
εi~N(0,∑i)

bi  and εi  are independent,

where Yi is a ni × 1 vector of continuous responses for 
the i−th subject. Xi, is a ni × p (p = k + 1) design matrix 
that considers all possible variables that affects the 
response values for the i−th subject. β, is a vector of p 
unknown fixed effects parameters. Zi is a ni × q matrix 
and represents the q observed values for the predicted 
variable in the i−th subject which affect the continuous 
variable that vary randomly across the subjects. D, is a 
q × q covariance matrix that consider the covariances 
between two random effects for each subject, here D is 
considered as an unstructured or a diagonal matrix. And 
finally, Σi, is a matrix in which the residuals association 
with observations on the same subject are considered 
under some specific assumptions so that V(Yi)=Zi DZi

´+∑i. 

Some common choices for this matrix are: diagonal, 
compound symmetry , a first order autoregressive or a 
Toeplitz structure [6, 9, 10]. Each out of these structures 
could yield a better estimation of the coefficients in 
accordance with the data behavior. 

Change point problem

Fitting a simple linear regression model to a data set in a 
cross-sectional setting is a common practice. It is usually 
assumed that the considered model holds for the whole 
data. However, sometimes researchers need to consider 
linear models where the structure of the model changes. 
An exploratory data analysis could allow to detect a 
change in the model structure in either any specific 
point or several points. The point in which the structure 
changes is called the change point. In general, change 
points can be known or unknown.

When a model has one or several change points we need 
to consider them to build a better model, in both cross-
sectional and longitudinal settings. In the cross-sectional 
setting the change point problem has been studied 
extensively. For a single change point and using SLRM, 
the model is expressed as:

here xs = τ, where τ is the change point of the model. If 
we assume τ is known then without loss of generality [11, 
12], we can obtain the MLE by using the usual procedure, 
getting it as τ ̂=(β ̂ 02-β ̂01) /(β ̂11-β ̂_12 ) . But, If τ is unknown, 
the MLE cannot be found using a traditional β ̂11-β ̂12 
procedure because the log-likelihood has not a solution 
in a closed form for estimating β and τ simultaneously, 
then implementing a numerical procedure is required. 
These numerical procedures use a grid search over a set 
of candidate values of τ, so an optimisation process is 
implicit to find the specific value of τ which maximizes 
the log-likelihood written as:

l(β|τ,y)=l(β1 |τ,y1,y2,....,ys )+A((β | τ,y) = l (β1,β2  | 
τ,ys+1,...,yn)

[13] remarked that an explicit form for τˆ does not exist, 
but it is conveniently defined by variables associated with 
random walks. He found both the exact and the asymptotic 
properties associated to the change point estimator, based 
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on an iterative process by defining the log-likelihood 
increments. The estimation procedure explained by him 
obey to a numerical solution due to most of the integrals 
must be calculated numerically. [14], [15] expressed that 
the asymptotic distribution of the change-point MLE is 
quite complicated and an exact computable expression 
for the distribution is not available in the literature. They 
established an exact and yet computationally attractive 
form for the asymptotic distribution of the change-point 
MLE, at the theorem (2.1) and found the methodology 
quite useful, readily computable and quite robust to 
deviations from the Gaussianity assumption. Some 
R-packages available to identify these change points on a 
piecewise regression could be done by using Segmented 
created by [16] or SiZer proposed by [17] and detecting 
change points over time series can be worked on R by 
using some packages as Change point done by [18].

In longitudinal settings, authors usually work by fitting 
linear mixed models but to find the change points in 
this scenery is not an easy task. In this way, identifying 
change points in linear mixed models (LMMs) is an open 
problem and has been studied by few authors. Recent 
works on this topic were done by [19]. They proposed 
a methodology Based on a Dynamic Programming 
Algorithm to find common change points for the whole 
set of subjects using LMMs.

They proposed to get those common change points by 
consider an extension of the model (2) by considering 
a model with g change points and general random 
effects, so there exists g+1 groups and the extension was 
expressed as:

yij=(β1 xij+β2 tij)1(tij≤τi)+(β1 xij+β2 τi )1(tij>τi )+b00i+b01i 
1(tij≤τi )+b02i1(tij>τi )+εij 

And simplified as:

yij = β1 xij+ β2 {tij 1(tij ≤ τi )+τi 1(tij > τi )}+b00i+b01i 1(tij ≤ τi 
)+b02i 1(tij > τi )+εij (6) where xij is the vector of values 
for the fixed effects associated to each subject at time tij 
these can be the same all over the time or it could change 
along the time if it is needed. The average model given by

yij=β1 xij+β2 tij 1(tij≤τi )+β2 τi 1(tij>τi )+ϵij  (7)

and its average change points can be seen graphically as:

Figure 1: Change in regression regime for LMMs. Source: Author. Simulated data

Developments have been made to identify change points 
in SLRMs and LMMs. This proposal considers the 
estimation of the subject-specific change points by using 
Evolutionary algorithms.

Evolutionary Algorithms

Evolutionary algorithms (EAs) is an evolution of genetic 
algorithms (GAs) and they allow to minimize an objective 
function over the course of successive generations 
([21]). Some authors have worked and referenced the 
main advantages and utility of this technique in several 
knowledge fields and as a strategy for solving multi-
objective problems [22], [23], [24], [25], [21].

Given a quality function to be maximized, we can 
randomly create a set of candidate solutions, i.e., elements 
of the function’s domain [22]. Then by applying the 
quality function to these as an abstract fitness measure 
(the higher, the better). On the basis of these fitness values, 
some of the better candidates are chosen to seed the next 
generation. This is done through a recombination and/or 
mutation process to those values.

Recombination is an operator that is applied to two or 
more selected candidates (parents) producing one or 
more new candidates (the children). Mutation is applied 
to one candidate and the result is one new candi- date. 
Therefore, executing the operation of recombination 
and mutation on the parents leads to the creation of a 
set of new candidates (the offspring). These candidates 
have their fitness evaluated and then compete  with the 
old ones for a place in the next generation. This process 
must be iterated until a candidate with sufficient quality 
is selected as the best member of the population.
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There are two main forces that form the basis of 
evolutionary systems. The former is due to the variation 
operators (combination and mutation) because these 
factors create necessary diversity within the population, 
and thereby facilitate novelty. Selection acts as a second 
force, increasing the mean quality of solutions in the 
population.

The most important components of Evolutionary 
Algorithm are: Representation, evaluation function, popu- 
lation, parent selection mechanism, variation operators: 
recombination and mutation and finally, a Survivor 
selection mechanism. However, these components can be 
adapted according to the goal of the optimization process. 
So, there is not a unique way to execute an EA. It exists 
variants of the evolutionary algorithms. These methods 
can be found detailed at the Eiben’s book [22]. Some of 
these methods have been imple- mented at an R package 
[26]. In this proposal, we worked by using a Differential 
Evolution Algorithm (DEA).

A Differential Evolution Algorithm follows the structure:

Differential Evolution Algorithm (DEA), so called due 
to that a differential mutation process is done, to get the 
reproduction operators. Given a population of candidates 
solution vectors in Rn a new mutant vector s* is generated 
by adding a perturbation vector p to an old s vector, so:

s*=s+p

and p is the scaled vector difference of two other randomly 
chosen population members

p=F*(sr1,g-sr2,g ),

where F > 0 is a real number that controls the rate at 
which the population evolves, and r1 and r2 are randomly 
selected one per mutant. The flow chart for this algorithm 
was given by [21], as follows:

Figure 2: Flow chart to Differential evolutionary algorithms. Source: Price, et. al. 
(2006) [21]

Details about the algorithm are given by [25], [22] and 
[21]. The procedure was implemented by [27] in R- 
Software through a full package called DEoptim. The 
notation used by them is referred as: DE/rand/1/bin, which 
refers to a DE algorithm with a base vector randomly 
chosen, 1 means that a vector difference is added to it 
and bin means that the mutate vector closely follows a 
binomial distribution. To make this process faster [28] 
implemented DEoptim package functions inside of a new 
package based on a C + + code.

Methodology

The global optimization process based on DE algorithms 
require a target function. In this case, the main goal is 
to estimate a vector of values τ =< τ1, . . . , τn >, that 
is, subject specific change points by using LMMs on a 
longitudinal data set. The log-likelihood for an LMM, as 
it was written in (2) is given by:
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Without losing generality, Xi is a simpler version for a 
general matrix due to in this case we assume only one 
explanatory variable in this study, but it can be extended 
to a p + 1 dimensional matrix. The last matrix Σi means 
that on the simulation process the random error follows 
an AR(1) process, it implies that each measurement made 
at each time depends on the last measure gotten one time 
before. It is a reasonable assumption according to the 
behavior of each subject on the real data set which we are 
working with.

As the goal of this proposal is concentrated into estimate 
as exact as possible the change points the target function 
will be changed and it will be considered the Restricted 
Maximum Likelihood given by:

The main idea behind REML estimation is to separate 
the part of the data used for estimation of Vi from that 
used of estimation of β. It is due to a procedure based on 
maximum likelihood, as it is well-known, produces biased 
estimators finite samples. Particularly it underestimates 
the diagonal elements of Vi [10]. The difference between 
ML and REML estimation becomes less important when 
n >> p

Results

Even though the change points associated to this kind of 
model can not be expressed in a close way, we can find 
a way to recursively update the specific value for τi, see 
appendix. Under the common assumptions for an LMM 
we have

Yi=Xi β+Zi bi+εi               (11)
Yi-Xi β~Nni (0,ZDZ +́∑i)    (12)

The general expression to the model given at (6) is:

This implies the log-likelihood function to be maximized 
is given by:

or the REML log-likelihood function

Simulation study

At the simulation study different sample sizes were 
studied and the subject specific change points were 
estimated. The first example to be shown considered 
25 subjects. The results were gotten by using DEoptim 
R-software package.  The executing time was improved 
by executing    a parallel version of this procedure to speed 
up the outcome of this process. The results presented in 
this paper considered 200 generations and a differential 
weighting factor of 0.8. In the procedure, each mutant 
was tested against a member in the previous generation, 
and the best value proceeded into the next generation.
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Following with the simulation process we assumed, the study has 50 subjects each one with 14 the measurements 
made along 92 days. The simulated process can be seen on the graph.

Once we got the results and by comparing the estimated points with the profiles on the graph, they coincide with the 
simulated points, in some occasions the estimation even is more precise than the original value.

Table 1. Estimated change points using dea for 25 subjects in a lmm

Figure 3: Profiles plot associated to 25 subjects. Source: Author

Table 2. Estimated change points using dea for 50 subjects in a lmm

Figure 4: Profiles plot associated to 50 subjects. Source: Author
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Figure 5: Profiles plot associated to 100 subjects. Source: Author

The last scenery in this simulation study was considering 
a whole amount of 100 subjects. In practice, it could 
be unattainable on longitudinal studies due to the large 
quantity of missing data or even censored data we should 
work with. However, it could help us to understand the 
distribution of the change points through a LMM by 
reaching a Global more than a local maximum.

Table 3. Estimated change points using dea for 100 subjects in a lmm
change points using DEA for a LMM

n = 100, ni = 14

Fixed effects values xi

According to the developments made on this problem and 
the results obtained through the implementation of this 
algorithm, we propose the next theorem.

Theorem 1: Given a sequence of n, ni dimensional random 
vectors Y1, Y2, · · ·, Yn, such that each vector component 
corresponds to a data over time (individual longitudinal 
data set). Assuming that yi = Xiβ + Zibi + εi and following 
the LMMs Gaussian 
Scheme Yi~Nn (Xi β,Zi DZ^T+∑^∑). Let be τ=(τ1,τ2,…,τn)́  
the subject specific change point vector, if:
i)   εi~Nni (0,∑i ), where ∑i corresponds to an AR(1) 
process as it was given in (9)
ii)   bi~Nq (0,D)
iii) Regularity conditions are fulfilled Then  τi~N(xi 
γ,S) where S corresponds to the variance once the DE 
algorithm has ended. Additionally,

A real data set

The methodology proposed is illustrated now with a 
specific data set about dried cypress wood slats. The 
data set  of data was collected by [29]. The thesis was 
titled: Drying of Cypress wood for industrial use: pallets, 
molding, and furniture. He made an experiment for his 
undergraduate monograph, which followed the agreement 
of Cartagena’s joint (1982). He wanted to explain the 
amount of water lost in the cypress wood slats according 
to the thickness of the slats over time. He collected 
information about 20 of them per each thickness. The 
experiment considered slats of 50 mm, 40 mm, 30 mm, 
25 mm and 20 mm and taking the measurements, in an 
interval of 7 days for around 92 days, about the percentage 
humidity of every slat.

Performing the experiment [29] highlighted that the 
protocol was followed correctly and he followed the 
recommenda- tions about that the wood can not be 
exposed directly to the sun ray. As, the wood win or lose 
water with equal easy in fiber direction and perpendicular 
thereto and he wanted to avoid the splits ends, frequently 
found on the slats, he applied an useful technique painting 
them using an Aluminum paint.
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Figure 6: Profiles plot associated to Cypress wood slats. Source: Author

Table 4. Estimated change points using DEA for Dried wood slats data
Change points using EA for a LMM n = 100, ni = 14

  Fixed effects values Thickness   

              
As [29] describe in his thesis, the wood slats were 
weighted each 7 days until each wood strip reached 
the equilibrium humidity content. The initial humidity 
content was calculated using as measure the corrected 
humidity content. He suggested fitting an exponential 
model to explain the behavior of the wood dried. The 

change points were gotten by applying this procedure to 
the real data set. They are given at table 4.

The distribution associated to these change points, with 
n = 100 (20 subjects by each thickness), is approximately 
a normal distribution such as it was expressed at the 
theorem 1. That follows a regular media and it agrees with 
the results gotten by simulation with the exception that 
the variance and means just depend on the slat thickness 
which is considered as fixed value.

Remarks

The adapted methodology proposed allows estimating 
a global maximum more than a local maximum which 
is one the main advantages of Evolutionary Algorithms.
The simulation results showed that the change points 
estimated by using this technique are quite near to the 
parameter value and they have been estimated quite 
accurately even with the sample size is small enough. 
The results for real data set showed that the change points 
estimated for the real data set are quite precise according 
to the subject-specific profile. The last results generate 
new questions about the utility of this change points 
and an increasing interest to model its behavior on large 
samples.Estimating these change points is considered 
a first step to build a calibration function to predict the 
change point given the particular values of the fixed 
effects. In the illustration with real data, we observed that 
this approach could permit to predict, in a plausible and 
precise way, the change point given a specific value for the 
thickness. From a practical point of view, this prediction 
process allows to reduces both storage time and storage 
expenses. Future works will incorporate the study on 
the asymptotic properties associated to the calibration 
function parameters from this subject specific change 
points and implementing a Bayesian methodology to 
obtain the calibration function associated to these change 
points.
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