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This study shows a methodology for the detection, classification, and location of bearings that 

presented ball faults, cage faults, and outer race faults. For this study, a three-phase induction motor 

was used, in which the stator current and voltage signals were measured. By calculating the total 

harmonic distortion and using the Stockwell Transform, different characteristics were obtained in the 

electrical signals that allowed defining fault conditions in the bearing, classification of the type of 

fault, and the location of the defective bearing (fan side or load side). By calculating the difference 

between the total harmonic distortion of the current and voltage signal, it is possible to identify a 

threshold value of 0.004 that separates a healthy condition and a fault condition. The joint use of the 

Stockwell Transform and the Fisher Scoring Algorithm allows us to classify the fault conditions with 

an average precision of 92.5%. The location of a bearing with defects on the load side generates a 

greater amplitude in the signal compared to those located on the fan side. This behavior allows 

establishing a threshold value of 1.6 for ball faults and 0.001 for cage faults and outer race. Due to the 

results obtained, the algorithm proposed in the study is considered to be a tool with a high degree of 

reliability for the diagnosis of bearings in induction motors. 

RESUMEN 
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Este estudio expone una metodología para la detección, clasificación y ubicación de fallas en 

rodamientos de bola, en la jaula y la pista exterior. Para este estudio se utilizó un motor de inducción 

trifásico, en el que se midieron las señales de tensión y corriente del estator. Calculando la distorsión 

armónica total y utilizando la Transformada de Stockwell, se obtuvieron diferentes características en 

las señales eléctricas que permitieron definir las condiciones de falla en el rodamiento, la 

clasificación del tipo de falla y la ubicación del rodamiento defectuoso (lado ventilador o lado carga). 

Calculando la diferencia entre la distorsión armónica total de la señal de corriente y voltaje, es 

posible identificar un valor de umbral de 0.004 que separa una condición de operación normal y una 

condición de falla. El uso de la Transformada de Stockwell y el algoritmo de puntuación de Fisher 

nos permite clasificar las condiciones de falla con una precisión promedio del 92.5%. La ubicación de 

un rodamiento con defectos en el lado de carga genera una mayor amplitud en la señal, en 

comparación con los ubicados en el lado del ventilador. Este comportamiento permite establecer un 

valor umbral de 1.6 para fallas de bola y 0.001 para fallas en la jaula y en la pista exterior. Por los 

resultados obtenidos, el algoritmo propuesto en el estudio se considera una herramienta con un alto 

grado de confiabilidad para el diagnóstico de rodamientos en motores de inducción. 
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Introduction 

Electric induction motors are used repeatedly in industry, commerce, and the tertiary sector due to the 

advantages they possess, such as robustness, complete structure, easy control, and reliability [1] - [4]. In 

spite of having a relatively uncomplicated structure, induction motors are still exposed to different types of 

faults, including end ring faults, bearings, manufacturing defects, and broken rotor bars [5] - [9]. These 

faults can be associated with grounding problems, overloads, phase desynchronization, short circuits, and 

asymmetrical power supply [5], [10] - [14].  

Figure 1. Faults (a) External and (b) Internal in induction motors. 
Source: Authors, 2020. 

The appearance of motor faults causes irregular operation, which leads to energy losses and increased 

maintenance work, which increases the economic costs of keeping the motor running. This shows the 

importance of early detection of faults in induction motors [1]. 

Among the most commonly used induction motors are squirrel cage motors. The types of faults that occur 

can be grouped into external and internal faults. Figure 1 shows a list of these two groups [15], [16]. 

In general, induction motors are exposed to high-temperature environments, corrosion, and 

mechanical stress. These conditions favor the development of incipient faults that are difficult to detect. 

This type of incipient fault does not cause a relevant problem to the engine. However, over time it can 

get worse and cause the engine to stop completely. Therefore, there is a need for methodologies that allow 

for monitoring conditions and early detection of faults. 

In addition to energy losses, studies indicate that motor faults cause a greater tendency to experimental 

oscillations, voltage and current imbalances, power reduction, and overheating. Figure 2 shows the 

most common types of faults in induction motors [17].  
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Figure 2. Typical faults in induction motors. 

Source: Authors, 2020. 

As shown in Figure 2, the bearings are the main fault in the motors. These faults are associated with broken 

cages, inner race, outer race, eroded balls, and among others. In general, vibration analysis is the technique 

used for bearing fault detection [18], [19]. This type of analysis requires the use of vibration transducers and 

modules, which makes it a costly analysis. An alternative is the motor current signature analysis (MCSA) 

since it only requires current measurements. In the case of the MCSA, the use of the Fourier Transform 

provides current signal spectrum information as a function of frequency for fault detection [20]. The 

spectral characteristic analysis is used for fault detection in multi-agent systems [21], [22]. Fast Fourier 

Transform (FFT) is the most frequently used tool for spectral analysis. However, it provides information 

without a time position, which can make the diagnosis of faults difficult. 

More advanced signal processing techniques involving frequency and time domain can be used to overcome 

the shortcomings of FFT [23]. These techniques include the Short-Term Fourier Transform (STFT), the 

Hilbert-Huang Transform, the Wigner-Ville Distribution (WVD), and the Wavelet Transform (WT) [24], 

[25]. The techniques using STFT and WVD are limited by the presence of cross-terms and fixed window 

sizes. However, the WT technique overcomes these limitations. Therefore, the latter has been investigated 

to replace diagnostics based on current and vibration signals. 

The Stockwell Transform (ST) is an enhancement of the Continuous Wavelet Transform (CWT), which 

allows for more information in the specific frequency bands. Several investigations have used ST in 

distribution systems using renewable energy sources and in transformer protection systems [26], [27]. 

Research by Singh and Shaik [28] shows that by analyzing the ST, it is possible to diagnose bearing faults. 

In this investigation, a methodology is proposed for the detection, classification, and location of bearings 

that presented ball faults, cage faults, and outer race faults. For this study, a three-phase induction motor 

was used, in which the stator current and voltage signals were measured, which were analyzed by 

calculating the total harmonic distortion and using the Stockwell Transform. 

Materials and methods 

Experimental bench description 

For the experimental study, a 380V, 4-pole, 50Hz, three-phase induction motor was used. The motor shaft is 

supported by two types of bearings, 6205 and 6204, which are located on the load side and on the fan side. 

The motor characteristics are shown in Table I. A multimeter, a current module, and a voltage module were 

used to measure the electrical parameters of the motor. The measuring instruments are connected to a 

computer for the recording and subsequent analysis of the data. Figure 3 shows the connection diagram of 

the experimental bench of the motor. 
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Table I. Motor specifications 

Parameter  Value 

Model ATO-Y2-90L-4 

Insulation class Class F 

Nominal output  1.5 kW 

Pole number 4-pole

Nominal speed 1400 rpm 

Frequency 50 Hz 

Nominal voltage  380 V 

Nominal torque  10.2 Nm 

Noise Level 61dB/(A) 

Source: Authors, 2020. 

Figure 3. Experimental test bench. 

1. Motor controller, 2. Induction motor, 3. Multimeter, 4. Voltage module, 5. Current module, 6. Computer.

Source: Authors, 2020. 

Three types of faults were selected for the study of bearing problems; cage fault, ball fault, and outer race 

fault. For each type of fault, 10 bearings were used to obtain the experimental samples. Additionally, 

experimental tests were carried out with 10 new bearings. 

Experimental methodology 

The measured stator currents for each test condition are analyzed in two ways. For the first analysis, the 

Fast Fourier Transform is used to identify the bearings that show some type of fault. Subsequently, the 

Stockwell Transformation is used to classify each type of bearing fault. Total Harmonic Distortion (THD) 

analysis was used to compare healthy and faulty bearings. With the use of the Stockwell Transformation, 

the characteristics of each type of fault are analyzed based on the statistical information of the magnitude 

and phase graphs.   

The information about the characteristics of each test obtained with the analysis by FFT and ST are unified 

to build a matrix. The characteristics obtained are classified using the Fisher Score algorithm. The functions 

are then sent to a support vector machine (SVM) for function identification. The algorithm used in the 

present study consists mainly of three steps; fault detection, function selection for fault type identification, 

and fault bearing position location (fan side or load side). 

Fault detection 

To identify whether a bearing is in a healthy or fault condition, the total harmonic distortion is calculated 

using the FFT. The calculation obtained is compared with a reference value obtained from tests with healthy 

bearings. The calculation of this fault factor is shown in equation (1).  
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𝐹1 = 𝑇𝐻𝐷𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑇𝐻𝐷𝑣𝑜𝑙𝑡𝑎𝑔𝑒 (1) 

By means of the Stockwell transformation, a matrix was constructed consisting of rows representing 

changes in time and columns representing changes in frequency. Different statistical parameters are 

calculated from the data collected from the matrix.  

Fisher's scoring criteria are used to classify the different characteristics. Because three types of bearing 

faults are studied, two SVM is used, identified as SVM-A and SVM-B. The fault identification 

scheme using the SVM is shown in Figure 4.

Figure 4. Fault classification using SVM. 

Source: Authors, 2020. 

Fault bearing position location 

A bearing with a fault condition can be located on the fan side or on the load side of the motor. Two 

parameters are used to identify the location of the bearing, depending on the type of fault. In the case of ball 

faults, the maximum magnitude is calculated using equation (2). 

𝐹2 = max(𝑚𝑎𝑥(|𝑆(𝜏, 𝑓)|)) (2) 

Similarly, for the outer race fault and the cage fault, the maximum phase angle is calculated using equation 

(3). 

𝐹3 = max(𝑚𝑎𝑥(|𝜙(𝜏, 𝑓)|)) (3) 

The parameters calculated with equations (1) and (2) are compared with the respective threshold values. 

Figure 5 shows the scheme of the algorithm used in this study. 

Figure 5. Algorithm for the detection, classification, and location of bearing faults. 

Source: Authors, 2020. 
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Results and Discussion 

Bearing fault detection 

Figure 6 shows the Fast Fourier transform of the stator current signal for healthy bearings and those with 

cage defects. 

Figure 6. Fast Fourier Transform of the current signal. 

Source: Authors, 2020. 

It is observed that the presence of the bearing fault tends to produce signals with higher amplitudes 

along the frequency spectrum. However, the results obtained from the Fast Fourier Transform do not allow 

a clear determination of the healthy and fault condition. To solve this problem, the fault index (F1) is 

calculated, which was described in equation (1). With this fault index, the two bearing conditions are again 

compared. This comparison is shown in Figure 7.

Figure 7. Fault index (F1) for each bearing condition. 
Source: Authors, 2020. 

By calculating the fault index (F1), an undeniable difference was observed between a bearing with a defect 

and a healthy one. The results show that the amplitude of the signal in the fault condition is six times greater 

than the healthy state. Due to these results, the fault index (F1) is recognized as a key tool to detect the 

presence of faults. In order to assess the capacity of the fault index (F1), the three bearing defects 

are individually compared to healthy conditions. The results obtained are shown in Figure 8.
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Figure 8. Fault index (F1) comparison for the three bearing fault conditions.
Source: Authors, 2020. 

Figure 8 shows the fault index (F1) of the 10 bearings in each category (healthy, ball fault, cage fault, and 

outer race fault). Each of these defects produces a different range in signal amplitude. For the ball, cage, and 

outer race faults, mean amplitudes of 0.012, 0.014, and 0.011 were observed. However, for the healthy 

condition, the variability of the signal amplitude was less compared to the fault conditions. In all health 

conditions, the amplitude remained close to 0.004. Furthermore, in no-fault condition was the signal 

amplitude less than or equal to 0.004. Due to these two characteristics, it is possible to consider this value as 

a threshold for the detection of bearings with defects. 

Selection of the main features of the signal 

The collected characteristics of the 40 bearings are grouped into two databases. The first base is used to feed 

the SVM-A, and the second is used in the SVM-B. For testing, a linear SVM is chosen since it allows a 

higher speed of convergence and requires a lower computational cost. 

By using the five characteristics shown in Table II, it was possible to achieve 95% accuracy in identifying 

ball fault or other types of fault. Figure 9 shows the accuracy of the SVM-A for different combinations of

the five characteristics. In this case, 95% accuracy is achieved with a combined level of 335. 

Table II. Diagnostic features used in the SVM-A 

Feature Equation 

Kurtosis of Magnitude matrix  𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 (𝑆(𝜏, 𝑓)) 

Standard deviation of magnitude 

matrix 
𝑆𝑡𝑑 (𝑆(𝜏, 𝑓)) 

Mean of Phase Angle matrix 𝑀𝑒𝑎𝑛 (∠𝑆(𝜏, 𝑓)) 

Maximum of Magnitude matrix 𝑚𝑎𝑥 (|𝑆(𝜏, 𝑓)|) 

Kurtosis of Phase matrix 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 (∠𝑆(𝜏, 𝑓)) 

Source: Authors, 2020. 
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Figure 9. Accuracy for combinations of five characteristics used in SVM-A. 
Source: Authors, 2020. 

Similarly, in the case of the SVM-B, a maximum precision of 90% was obtained with the use of the three 

characteristics shown in Table III. This precision allows the identification of cage fault or outer race fault. 

Figure 10 shows that 90% accuracy is achieved with a combined level of 60.

Table III. Diagnostic features used in the SVM-B 

Feature Equation 

Maximum of Phase matrix 𝑚𝑎𝑥 (∠𝑆(𝜏, 𝑓)) 

Kurtosis of Magnitude matrix 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 (𝑆(𝜏, 𝑓)) 

Standard deviation of Phase matrix 𝑆𝑡𝑑 (∠𝑆(𝜏, 𝑓)) 

Source: Authors, 2020. 

Figure 10. Accuracy for combinations of three characteristics used in SVM-B. 

Source: Authors, 2020. 
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Faulty bearing location 

The last step of the algorithm proposed in this study is to determine the location of the bearing that has the 

fault, which may be located on the fan side or on the load side of the motor. In this case, the calculation of 

the two-fault index (F2 and F3) is performed depending on the type of defect. These calculations are based 

on equations (1) and (2) previously described. Figure 11 shows the fault index calculation (F2) for ball 

faults 

Figure 11. Criteria to define ball fault location. 
Source: Authors, 2020. 

(a) (b) 

Figure 12. Criteria to define the location of (a) cage fault and (b) outer race fault. 
Source: Authors, 2020. 

The results obtained show that the bearings located on the fan sideshow appreciably less signal amplitude. 

This amplitude varied in a narrow range of 1.57-1.60. Therefore, the value of 1.60 was established as a 

threshold value that would allow defining the location of the faulty bearing. Similarly, the fault index 

calculation (F3) is used to locate bearings with cage faults and outer race faults. The results obtained 

are shown in Figure 12.
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A behavior similar to that obtained in Figure 11 was observed. The signal amplitude is considerably greater

for defective bearings located on the load side of the motor. In this case, a value of 0.001 can be considered 

as a threshold to locate the faulty bearing. 

Conclusions 

This article investigates a method of detecting, classifying, and locating the bearings of a three-phase 

induction motor that exhibits defects related to ball faults, cage faults, and outer race faults. The study 

method is based on an algorithm that analyzes the signals obtained from the Fast Fourier Transform and the 

Stockwell Transform. These signals were collected by measuring the current and voltage of the motor 

stator. 

The characteristics of the electrical signals are strongly influenced by the presence of bearing faults. This 

can be verified by comparing the amplitudes of the signals calculated by FFT for a healthy and faulty 

condition. However, this type of analysis is not sufficient to detect defective bearings with high reliability. 

The results obtained show that, by calculating the difference between the total harmonic distortion of the 

current and voltage signal, it is possible to identify a threshold value of 0.004 that separates the healthy 

condition from the three fault states analyzed. 

Using the Stockwell Transform, it is possible to generate a set of characteristics that can be classified using 

Fisher's Scoring Algorithm. The joint use of these two tools allows us to feed algorithms such as SVM to 

classify ball faults, cage faults, and outer race faults. With the use of this classification method, the accuracy 

of between 90% - 95% is achieved. 

The maximum magnitude and maximum phase angle allow the location of the faulty bearing to be 

identified. In the case of the three faults studied, it was shown that the location of a bearing with defects on 

the load side generates a greater amplitude in the signal. This behavior allows establishing a threshold value 

of 1.6 for ball faults and 0.001 for cage faults and outer race. Due to the results obtained, it is concluded that 

the algorithm proposed in the study is a tool that can be used with a high degree of reliability for the 

diagnosis of the condition of the bearings. 
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