Viviendas con Electricidad Neutral con un Caso de Estudio en el Área Metropolitana de Bogotá-Colombia

Neutral Electricity Houses with a Case Study in the Metropolitan Area of Bogotá-Colombia

Contenido principal del artículo

Diego Fernando Quintero Pulido

Resumen

Este artículo revisa el desarrollo actual para incrementar el acceso a la electricidad y la implementación de viviendas con electricidad neutral (viviendas autónomas no conectadas a la red eléctrica) en diferentes escenarios. Además, se presentan con más detalle las posibles direcciones de investigación para tecnologías de viviendas con electricidad neutral. Para esto, se describe un caso de una posible vivienda con electricidad neutral en Colombia junto con algunos resultados iniciales de simulaciones usando energía solar fotovoltaica, una nueva batería a base de sal marina (the Sea-Salt battery) y una celda de combustible a base de glicerol (the Glycerol Fuel Cell) como sistema de respaldo. Las simulaciones utilizan el software BEopt y DstorageS. Este análisis se realiza utilizando datos medidos de consumo de electricidad en una vivienda localizada en la zona metropolitana de Bogotá-Colombia. Resultados preliminares muestran que una vivienda en Colombia puede funcionar con electricidad neutral, al tener una energía solar FV de 4 kW con una batería de sal marina de 10 kWh y una celda de combustible de glicerol de 2 kW funcionando de forma autónoma durante todo el año 2019.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias

[1] International Renewable Energy Agency, Off-grid renewable energy solutions to expand electricity access: An opportunity not to be missed. Abu Dhabi, 2019.
[2] S. R. Khandker, H. A. Samad, Z. K. M. Sadeque, M. Asaduzzaman, M. Yunus, y A. K. E. Haque, “Surge in Solar-Powered Homes Experience in Off-Grid Rural Bangladesh Energy and Mining”, 2014.
[3] Council of European Energy Regulators asbl, “Energy Quality of Supply Work Stream (EQS WS) CEER Benchmarking Report 6.1 on the Continuity of Electricity and Gas Supply”, 2018. Consultado: may 08, 2019. [En línea]. Disponible en: https://www.ceer.eu/documents/104400/-/-/963153e6-2f42-78eb-22a4-06f1552dd34c.
[4] Sinteg, “Network operation and system stability: Sinteg”, 2020. https://www.sinteg.de/en/specific-topics/network-operation-and-system-stability/ (consultado jun. 29, 2020).
[5] A. Stijn, “Net-Metering RES LEGAL Europe”, 2019. http://www.res-legal.eu/search-by-country/netherlands/single/s/res-e/t/promotion/aid/net-metering-1/lastp/171/ (consultado may 08, 2019).
[6] H. Wirth y F. Ise, “Recent Facts about Photovoltaics in Germany”, 2020. Consultado: jun. 29, 2020. [En línea]. Disponible en: https://www.ise.fraunhofer.de/en/publications/studies/recent-facts-about-pv-in-.
[7] E. Bellini, “Netherlands to replace net metering with new scheme for residential, commercial PV – PV Magazine International”, 2018. https://www.pv-magazine.com/2018/06/18/netherlands-to-replace-net-metering-with-new-scheme-for-residential-commercial-pv/ (consultado may 08, 2019).
[8] F. Solar, “Estado del mercado Solar Colombiano — The Solar Future Colombia”, 2018. https://colombia.thesolarfuture.com/news-articles/2018/10/1/state-of-the-colombian-solar-market-39w6w (consultado abr. 17, 2020).
[9] The World Bank, “Is the world on track to deliver energy access for all?”, May 23, 2018. http://www.worldbank.org/en/news/feature/2018/05/18/sustainable-development-goal-7-energy-access-all (consultado may 25, 2018).
[10] Netherlands Environmental Assessment Agency Paul L Lucas, “Towards universal electricity access in Sub-Saharan Africa A quantitative analysis of technology and investment requirements Policy Report”, 2017. Consultado: may 08, 2019. [En línea]. Disponible en: https://www.pbl.nl/sites/default/files/cms/publicaties/pbl-2017-towards-universal-electricity-access-in-sub-saharan-africa-1952.pdf.
[11] F. Donou-Adonsou, “Technology, education, and economic growth in Sub-Saharan Africa”, Telecomm. Policy, ago. 2018, doi: 10.1016/J.TELPOL.2018.08.005.
[12] Plug in the World, “Home | Mobisol Group | Innovative Off-Grid Solar Solutions | Designed in Germany”, 2017. https://plugintheworld.com/ (consultado nov. 19, 2018).
[13] M. Koepke y S. Groh, “Against the Odds: The Potential of Swarm Electrification for Small Island Development States”, Energy Procedia, vol. 103, pp. 363–368, dic. 2016, doi: 10.1016/J.EGYPRO.2016.11.300.
[14] G. Kyriakarakos y G. Papadakis, “Multispecies swarm electrification for rural areas of the developing world”, Appl. Sci., vol. 9, núm. 19, 2019, doi: 10.3390/app9193992.
[15] United Nations, “About the Sustainable Development Goals - United Nations Sustainable Development”, 2015. https://www.un.org/sustainabledevelopment/sustainable-development-goals/ (consultado dic. 27, 2019).
[16] T. W. Bank, “Clean and Improved Cooking in Sub-Saharan Africa”, 2014. doi: 98664.
[17] SEforALL, “About Us | Sustainable Energy for All (SEforALL)”. https://www.seforall.org/about-us (consultado mar. 19, 2020).
[18] The World Bank, “Access to electricity (% of population) | Data”, 2017. https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS?view=map (consultado oct. 27, 2018).
[19] J. Arlet, “Electricity Tariffs, Power Outages and Firm Performance: A Comparative Analysis”, 2017. Consultado: oct. 27, 2018. [En línea]. Disponible en: http://pubdocs.worldbank.org/en/444681490076354657/Electricity-Tariffs-Power-Outages-and-Firm-Performance.pdf.
[20] The World Bank, “Energizing Africa : Achievements and Lessons from the Africa Renewable Energy and Access Program (AFREA) Phase I”, 2015. [En línea]. Disponible en: https://openknowledge.worldbank.org/bitstream/handle/10986/25201/Energizing0Afr000AFREA0000phase0one.pdf?sequence=1&isAllowed=y.
[21] P. J. Burke y S. Kurniawati, “Electricity subsidy reform in Indonesia: Demand-side effects on electricity use”, Energy Policy, vol. 116, pp. 410–421, may 2018, doi: 10.1016/J.ENPOL.2018.02.018.
[22] S. F. Kennedy, “Indonesia’s energy transition and its contradictions: Emerging geographies of energy and finance”, Energy Res. Soc. Sci., vol. 41, pp. 230–237, jul. 2018, doi: 10.1016/J.ERSS.2018.04.023.
[23] K. van Alphen, W. G. J. H. M. van Sark, y M. P. Hekkert, “Renewable energy technologies in the Maldives—determining the potential”, Renew. Sustain. Energy Rev., vol. 11, núm. 8, pp. 1650–1674, oct. 2007, doi: 10.1016/J.RSER.2006.02.001.
[24] I. Ali, G. Shafiullah, y T. Urmee, “A preliminary feasibility of roof-mounted solar PV systems in the Maldives”, Renew. Sustain. Energy Rev., vol. 83, pp. 18–32, mar. 2018, doi: 10.1016/J.RSER.2017.10.019.
[25] E. H. Lysen, Report IEA-PVPS T9-12: 2012 : Pico Solar PV Systems for Remote Homes. IEA International Energy Agency, 2013.
[26] International Finance Corporation, “Lighting Global: Off-grid Solar Market Trends Report 2018”, 2018. doi: 10.1017/CBO9781107415324.004.
[27] E. Forde, “The ethics of energy provisioning: Living off-grid in rural Wales”, Energy Res. Soc. Sci., vol. 30, pp. 82–93, ago. 2017, doi: 10.1016/J.ERSS.2017.06.018.
[28] M. E. Menconi, S. dell’Anna, A. Scarlato, y D. Grohmann, “Energy sovereignty in Italian inner areas: Off-grid renewable solutions for isolated systems and rural buildings”, Renew. Energy, vol. 93, pp. 14–26, ago. 2016, doi: 10.1016/J.RENENE.2016.02.034.
[29] “Pecan Street Inc. |”, 2013. http://www.pecanstreet.org/ (consultado may 08, 2020).
[30] E. Codensa, “Servicio al usuario | Enel-Codensa”, 2020. https://www.enel.com.co/es/personas.html (consultado abr. 17, 2020).
[31] TED The Energy Detective, “TED Pro Home Store”. http://www.theenergydetective.com/prohomestore.html (consultado oct. 16, 2018).
[32] M. Van Der Laan, “GridFlex Heeten investigates feasibility of local energy market”, 2018. https://ict.eu/wp-content/uploads/2018/10/ICT-GROUP_Casestudy-Energy-GFH_UK_Dig.pdf.
[33] D. Quintero Pulido, G. Hoogsteen, M. ten Kortenaar, J. Hurink, R. Hebner, y G. Smit, “Characterization of Storage Sizing for an Off-Grid House in the US and the Netherlands”, Energies, vol. 11, núm. 2, p. 265, ene. 2018, doi: 10.3390/en11020265.
[34] V. M. J. J. Reijnders y J. L. Hurink, “Testing Grid-Based Electricity Prices and Batteries in a Field Test. CIRED Workshop - Ljubljana , 7-8 June 2018 Paper 0500”, 2018, núm. 500, pp. 7–8.
[35] D. F. Quintero Pulido, Energy Storage Technologies for Off-grid Houses, 1a ed. Enschede, The Netherlands: University of Twente, 2019.
[36] D. Quintero Pulido, M. Ten Kortenaar, J. Hurink, y G. Smit, “A Practical Approach in Glycerol Oxidation for the Development of A Glycerol Fuel Cell”, IMedPub J. Trends Green Chem., vol. 3, núm. 1:4, pp. 1–17, 2017, doi: 10.21767/2471-9889.100018.
[37] E. D. of US, “Home | BEopt”, 2020. https://beopt.nrel.gov/home (consultado abr. 17, 2020).
[38] G. Hoogsteen, J. L. Hurink, y G. J. M. Smit, “DEMKit: A Decentralized Energy Management Simulation and Demonstration Toolkit”, en Proceedings of 2019 IEEE PES Innovative Smart Grid Technologies Europe, ISGT-Europe 2019, sep. 2019, p. 439, doi: 10.1109/ISGTEurope.2019.8905439.
[39] G. Hoogsteen y J. L. Hurink, “DEMKit | EWI - Energy”, 2019. https://www.utwente.nl/en/eemcs/energy/demkit/ (consultado jun. 26, 2020).
[40] M. Ten Kortenaar, “Seasalt battery | Dr Ten BV”, 2013. http://www.drten.nl/zeezout-batterij/?lang=en (consultado may 05, 2020).