1Biologist, oscarjo_parra@outlook.com, ORCID 0000-0002-8548-6737 Universidad de Pamplona, Pamplona, Colombia.
2PhD in Science, gcancino@unipamplona.edu.co, ORCID 0000-0002-3812-1129 Universidad de Pamplona, Pamplona, Colombia.
How to cite:
O. Parra-Peñalosa and G. Cancino-Escalante, “Evaluation of induction of somatic embryogenesis from cotyledonary leaves of Banana Passion fruit (Passiflora mollissima) L.H Bailey. Respuestas, vol. 24, no. 3, pp. 31-38, 2019.
Received on February 12, 2018 - Approved on June 15, 2018
Passiflora mollissima L.H Bailey is an endemic species from the Andes mountain of Colombia in South America with important edible fruits and medicinal and economical properties. The development of improved micropropagation techniques is necessary to provide rapid and efficient clonal propagation of elite genotypes with high resistance and uniform production, as well as a system that can be used for genetic transformation. For this reason, the investigation focused on the evaluation of induction of somatic embryogenesis in P. mollissima from cotyledonary leaves, the effect of growth regulator concentrations and the orientation of explants on embryo production. Histological analyses of somatic embryogenesis were performed every 10 days after induction over 38 days of exposure to the medium. Results showed somatic embryo formation on Murashige and Skoog, (1962) culture medium supplemented with 4.5 μM 2,4-diclorophenoxyacetic acid plus 4.5 μM 6-benzyladenine. The results obtained are applicable to knowledge of non-zygotic embryogenesis in passionflower of the Andean region, for the purpose of improvement and commercial use. It is noteworthy that this is the first study in the induction and obtaining of embryos in P. mollissima.
Keywords:Banana passion fruit, Curuba, Embryos, In vitro, Organogenesis, Passifloras.
Passiflora mollissima L.H Bailey es una especie endémica de los Andes de Colombia sus frutos son comestibles y presentan propiedades medicinales. El desarrollo de técnicas de micropropagación permiten proporcionar una propagación clonal rápida y eficiente de genotipos de élite con alta resistencia y producción uniforme, así como un sistema que pueda usarse para la transformación genética. Por esta razón, la investigación se centró en la evaluación de la inducción de embriogénesis somática en P. mollissima a partir de hojas cotiledonarias, el efecto de las concentraciones del regulador de crecimiento y la orientación de los explantes en la producción de embriones. Los análisis histológicos de la embriogénesis somática se realizaron cada 10 días después de la inducción durante más de 38 días de exposición al medio. Los resultados mostraron la formación de embriones somáticos en el medio de cultivo Murashige y Skoog, (1962) suplementado con ácido 2,4-diclorofenoxiacético 4,5 μM más 6-benciladenina 4,5 μM. Los alcances de esta investigacion son aplicables al conocimiento de la embriogénesis no cigótica en las pasifloras de la región andina, con fines de mejora y uso comercial. Es de destacar que este es el primer estudio en la inducción y obtención de embriones en P. mollissima.
Keywords:Curuba de castilla, Embriones, In vitro, Organogénesis, Pasifloras.
Passiflora is the largest and most important genus of the Passifloraceae family, comprising about 575 species [1]. In North America and Europe, the main species, P. incarnata, is popularly known as passion fruit or passion flower, while in South America, the most cultivated species are P. edulis var. edulis, P. edulis var. flavicarpa, P. mollissima var. mollissima [2].
P. mollissima is commonly known as ‘‘curuba de castilla’’ or ‘‘banana passion fruit”, and it grows as a vigorous climber in climates with average temperatures between 13 and 16°C. Some varieties adapt to altitudes from 1,700 to 3,000 meters above sea level (m.a.s.l) however, altitudes below 1,000 meters increase the incidence of pests and above 2,500 meters of diseases [3]. In Colombia, it is highly valued in the commercial market for not only its edible fruit but also for its nutritional and medicinal properties. Production is destined to both local and international markets and the largest importer is Europe [4].
With regards to the percentage of seed germination, growth rate and viability of seedlings [5] established that for some Passiflora species seedling developed after 65-90 days of culture and for P. mollissima, in particular, presented lower germination rates when compared to other species [6] hence, in vitro propagation (micropropagation, embryogenesis) is an alternative to traditional methods [7].
The first in vitro studies developed in Passifloras were reported in Passiflora caerulea L. [8] and P. edulis f. flavicarpa and Passiflora molissima (Kunth) LH Bailey [9] which focused on the induction of organogenesis. Other procedures such as non-zygotic organogenesis and embryogenesis, that offer rapid large-scale propagation, have been developed (10). As for studies of somatic embryogenesis research has been conducted in P. edulis (11, 12); P. cincinnata [13], P. foetida [14] and P. ligularis [15], however, at present the induction of somatic embryogenesis from zygotic embryos or leaf explants of P. mollissima has not yet been reported.
In this respect somatic embryogenesis offers many advantages over conventional micropropagation such as low rate of genetic variation, culture of a large number of somatic embryos (up to 1.35 million somatic embryos capable of being regenerated per liter of medium) and root/shoot formation is simultaneous during regeneration, thus eliminating the need for a root induction phase [16]. Therefore, the aim of this study is to evaluate the induction of somatic embryogenesis from cotyledonary leaves and the effect of the orientation of explants adaxially or abaxially side-up on culture medium in order to propose reproducible methodology for embryo production with application in mass propagation and genetic transformation of P.tripartita.
The study allowed to determine the effect of planting orientation and hormonal concentrations on the development of embryonic tissue in foliar explants of P. mollissima var. mollisima. The concentrations of the 2.4 D and BA growth regulators significantly influence the formation of somatic embryos, with the concentration of 4.5 μM BA + 4.5 μM 2.4D being the highest frequency presented for these variables.
5. AcknowledgmentsAuthors appreciate the support provided by the Universidad de Pamplona. Pamplona, North de Santander, Colombia.
6. References[1] A.C. Aguirre-Morales, M.M. Bonilla-Morales and C.M. Caetano, “Passiflora franciscoi, a new species of Passiflora subgenus Astrophea (Passifloraceae) from Colombia”, Phytotaxa, vol. 252, no. 1 pp. 56-62, mar 2016.
[2] R.C. Correa, R.M. Peralta, C.W. Haminiuk, G.M. Maciel, A. Bracht and I.C. Ferreira, “The past decade findings related with nutritional composition, bioactive molecules and biotechnological applications of Passiflora spp. (passion fruit)”, Trends in Food Science and Technology, Vol. 58, pp. 79–95, dic, 2016.
[3] M. Lobo and C.I. Medina, “Cultivo, Poscosecha y Comercialización de las Pasifloráceas en Colombia: Maracuyá, Granadilla, Gulupa y Curuba”, Sociedad Colombiana de Ciencias Hortícolas, Bogotá, Colombia, 2009.
[4] A.C. Salazar, C. Ramírez, “Fruit maturity stage and provenance affect seed germination of Passiflora mollissima (banana passion fruit) and P. ligularis (sweet granadilla), two commercially valuable tropical fruit species”, Seed Science and Technology, Vol. 45, No. 2, pp. 383–397, jul 2017.
[5] M.V. Pires, A.A. de Almeida, A.L. de Figueiredo, F.P. Gomes and M.M. Souza. “Germination and seedling growth of ornamental species of Passiflora under artificial shade”, Acta Scientiarum Agronomy, Vol. 34 No. 1, pp. 67-75, feb, 2012.
[6] M. Delanoy, P. Van Damme, X. Scheldeman and J. Beltran, “Germination of Passiflora mollissima (Kunth) L.H.Bailey, Passiflora tricuspis Mast. and Passiflora nov sp. seeds”, Scientia Horticulturae, Vol. 110, No. 2, pp. 198–203, oct 2006.
[7]] M. Ozarowski and B. Thiem, “Progress in micropropagation of Passiflora spp. to produce medicinal plants: A mini-review”, Brazilian Journal of Pharmacognosy, Vol. 23, No. 6, pp. 937947, nov 2013.
[8] F. Nakayama, “Cultivo in vitro de tejidos de Passiflora caerulea”, Revista de la Facultad de Agronomía de la Universidad Nacional de La Plata, Vol. 42, No. 1, pp. 63–74, 1966.
[9] M.J. Moran-Robles, “In vitro vegetative multiplication of axillary buds of P. edulis var. flavicarpa Degener and P. mollissima Bairley”, Fruits, Vol. 33, pp. 701–715, 1978.
[10]G. Pacheco, M. Simão and M.G. Vianna, “In vitro conservation of Passiflora A review”, Scientia Horticulturae, Vol. 211, pp. 305-311, nov 2016.
[11] M. L. da Silva, D. L.P Pinto, M. P. Guerra, E.I.S. Floh, C. H. Bruckner and W.C. Otoni,”A novel regeneration system for a wild passion fruit species (Passiflora cincinnata Mast.) based on somatic embryogenesis from mature zygotic embryos”, Plant Cell, Tissue and Organ Culture, Vol. 99, No. 1, pp. 47– 54, oct 2009.
[12] D.L.P. Pinto, A.M.R. de Almeida, M.M. Rêgo, M.L. da Silva, E.J. de Oliveira and W.C. Otoni, “Somatic embryogenesis from mature zygotic embryos of commercial passionfruit (Passiflora edulis Sims) genotypes,” Plant Cell, Tissue and Organ Culture, Vol. 107, No. 3, pp. 521–530, jul 2011.
[13] D.I. Rocha, L.M. Vieira, F.A.O. Tanaka, L.C. da Silva and W.C. Otoni, “Somatic embryogenesis of a wild passion fruit species Passiflora cincinnata Masters: histocytological and histochemical evidences”, Protoplasma, Vol. 249, No. 3, pp. 747–758, 2012.
[14] Y.B. Rosa, M.C. Dornelas, “In vitro plant regeneration and de novo differentiation of secretory trichomes in Passiflora foetida L. (Passifloraceae)”, Plant Cell, Tissue and Organ Culture, Vol. 108 No. 1, pp. 91-99, jan 2012.
[15] D. de Oliveira Prudente, R. Paiva, S. Carpentier, R. Swennen, F. Nery, S. L. Silva and B. Panis, “Characterization of the formation of somatic embryos from mature zygotic embryos of Passiflora ligularis Juss”, Plant Cell, Tissue and Organ Culture, Vol. 131, No. 1, pp.: 97–105, jul 2017.
[16] S. Khadke, A. Kuvalekar, “Direct somatic embryogenesis and plant regeneration from leaf and stem explants of Nothapodytes foetida: a critically endangered plant species”, International Journal of Plant, Animal and Environmental Sciences, Vol. 3, No. 1, pp. 257–264, jan 2013.
[17] T. Murashige, F. Skoog, “A revised medium for rapid growth and bioassays with tobacco tissue culture”, Physiologia Plantarum, Vol. 15, pp. 473-479, 1962.
[18] C.A. Schneider, W.S. Rasband and K.W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis”, Nature Methods, Vol 9, No. 7, pp. 671, jul 2012.
[19] T.P. O’Brien, N. Feder and M.E. McCully, “Polychromatic staining of plant cell walls by toluidine blue O.”, Protoplasma, Vol. 59, No. 2, pp. 368–373, jul 1964.
[20] T. O’Brien and M. McCully, The study of plant structure principles and selected methods, Melbourne: Termarcarphi Pty Ltd, 1981.
[21] P. Deo, A. Tyagi, M. Taylor, R. Harding and J. Becke, “Factors affecting somatic embryogenesis and transformation in modern plant breeding”, The South Pacific Journal of Natural and Applied Sciences, Vol. 28, No. 1, pp. 27-40, 2010.
[22] I. Bermúdez, T.D.S. Blanco, J. Pérez, L. García, N. Veitía and R. Collado, “Efecto de la orientación y la longitud del cotiledón inmaduro sobre la formación de embriones somáticos en dos genotipos cubanos de soya, Biotecnología Vegetal, Vol. 10, No. 2, pp. 121 - 128, apr 2010.
[23] M. Griga, “Some factors affecting somatic embryogenesis efficiency in soybean (Glycine max [L.] Merrill)”, Biologia Plantarum, Vol. 35, No. 2, pp. 101-106, 1993.
[24] J. Aparecida, M.L. Carneiro, I. Olívio and B. Appezzato “Anatomical study of somatic embryogenesis in Glycine max (L.) Merrill”, Brazilian Archives of Biology and Technology, Vol. 45, No. 3, pp. 277-286, sept 2002.
[25] M. Ziv and J. Chen, The anatomy and Morphology of Tissue Cultured Plants. In: George EF, Hall MA, Jan De Klerk, G (Eds) Plant Propagation by Tissue Culture, Springer. Dordrecht, 2008.
[26] G. Ranjan “In vitro somatic embryogenesis in callus cultures of Azadirachta indica A. Juss. A multipurpose tree”, Journal Forest Research, Vol. 10, No. 1, pp. 263-267 2005.
[27] S. Vila, H. Rey, A. Gonzalez and L. Mroginski “Somatic embryogenesis and plant regeneration in Cedrela fissilis”, Biologia Plantarum, Vol. 53, No. 2, pp. 382-386, jun 2009
[28] P. Das, “In Vitro somatic embryogenesis in some oil yielding tropical tree species”, American Journal of Plant Science, Vol. 2, No. 1, pp. 217-222, jun 2011.
[29] D.K. Das and A. Rahman, “Induction of somatic embryogenesis and long-term maintenance of embryogenic lines of litchi”, Current Trends in Biotechnology and Pharmacy, Vol. 7, No. 2, pp. 625-634, apr 2013
[30] G.M. da Silva, A. Cruz, W. Otoni, T. Pereira, D. Rocha and M. da Silva, “Histochemical evaluation of induction of somatic embryogenesis in Passiflora edulis Sims (Passifloraceae)”, In vitro Cellular & Developmental Biology - Plant, Vol. 51, No. 5, pp. 539-545, oct 2015
[31] S. Bernal, L. Duarte, D. Rodríguez, D.L. Bohórquez, E. Araque and J. Pacheco, “Embriogénesis no zigótica en Passiflora maliformis Nonzygotic Embryogenesis in Passiflora maliformis”, Revista Peruana de Biología, Vol. 25, No. 3, pp. 281- 290, jul 2018.
[32]P. Sharma and M.V. Rajam, “Genotype, explant and position effects on organogenesis and somatic embryogenesis in eggplant (Solanum melongena L.)”, Journal of Experimental Botany, Vol. 46, No. 28, pp. 153-141, jan 1995.
[33]T. Radhakrishnan, T.G.K. Murthy, K. Chandran and A. Bandyopadhyay, “Somatic embryogenesis in Arachishypogea: revisited”, Australian Journal of Botany, Vol. 49, No. 6, pp. 753-759, 2001.
[34]C.K. Kim, J.D. Chung, S.O. Jee and J.Y. Oh, “Somatic embryogenesis from in vitro grown leaf explants of Rosa hybrida L.”, Journal of Plant Biotechnology, Vol. 5, No. 3 169-172, mar 2003R.
[35] Zegzouti, M.F. Arnold and J.M. Favre. “Histological investigation of the multiplication steps in secondary somatic embryogenesis of Quercus robur L”, Annals of Forest Science, Vol. 58, No. 6, pp. 681-690, jan 2001.
[36] D.L. Paim Pinto, A.M. Almeida, M.M. Rêgo, M.L. Silva, E.J. Oliveira, W.C. Otoni. “Somatic embryogenesis from mature zygotic embryos of commercial passionfruit (Passiflora edulis Sims) genotypes”, Plant Cell Tissue and Organ Culture, Vol. 107, No. 3, pp. 521–530, jul 2011.