APPLICATION OF PASCAL'S TRIANGLE TO FIND THE TANGENTS OF (X) ANGLES

APLICACIÓN DEL TRIÁNGULO DE PASCAL PARA HALLAR LAS TANGENTES DE (X) ÁNGULOS

Main Article Content

MARTA MACHO STADLER
Abstract

Pascal’s triangle is a representation of binomial coefficients arranged in the form of a triangle. It is named after the French philosopher and mathematician Blaise Pascal, who introduced the notation in 1654, in his treatise on arithmetic and trigonometry. As a result, it can solve complex systems of equations in a simple way; it also encourages the application of mathematical sources and techniques to solve new problems derived from them. In this manuscript, it is proposed as a method to find the tangents of a proposed angle

Keywords

Downloads

Download data is not yet available.

Article Details

References

Arteaga, P. M. D. L. C. (2015). Funciones trigonométricas para ángulos especiales. Con-Ciencia Boletín Científico de la Escuela Preparatoria No. 3, 2(4).

Bedoya Tique, J., & Polania Peña, A. X. (2017). De la semejanza de triángulos a las Funciones trigonométricas (Doctoral dissertation, UNIVERSIDAD SURCOLOMBIANA).

Expansion of sin(nθ) and cos(nθ), Brilliant. Frank C. Fung, An Approach to Mathematic Functions Basics (Section XLIII – Tangent Additions and the Pascal Triangle)

Torroba, P. L., Trípoli, M. D. L. M., Devece, E., & Aquilano, L. (2017). Funciones trigonométricas y el movimiento armónico simple. In I Congreso Latinoamericano de Ingeniería (CLADI)(Paraná, 13 al 15 de septiembre de 2017).

Zapata, J. H. A., Rojas, Á. M. J., & Martínez, W. A. Á. (2015). Implicaciones pedagógicas de un software de geometría dinámica en la percepción geométrica de las funciones trigonométricas seno, coseno y tangente. Praxis, 11(1), 30-46.

OJS System - Metabiblioteca |