APPLICATION OF PASCAL'S TRIANGLE TO FIND THE TANGENTS OF (X) ANGLES
APLICACIÓN DEL TRIÁNGULO DE PASCAL PARA HALLAR LAS TANGENTES DE (X) ÁNGULOS
Main Article Content
Pascal’s triangle is a representation of binomial coefficients arranged in the form of a triangle. It is named after the French philosopher and mathematician Blaise Pascal, who introduced the notation in 1654, in his treatise on arithmetic and trigonometry. As a result, it can solve complex systems of equations in a simple way; it also encourages the application of mathematical sources and techniques to solve new problems derived from them. In this manuscript, it is proposed as a method to find the tangents of a proposed angle
Downloads
Article Details
Arteaga, P. M. D. L. C. (2015). Funciones trigonométricas para ángulos especiales. Con-Ciencia Boletín Científico de la Escuela Preparatoria No. 3, 2(4).
Bedoya Tique, J., & Polania Peña, A. X. (2017). De la semejanza de triángulos a las Funciones trigonométricas (Doctoral dissertation, UNIVERSIDAD SURCOLOMBIANA).
Expansion of sin(nθ) and cos(nθ), Brilliant. Frank C. Fung, An Approach to Mathematic Functions Basics (Section XLIII – Tangent Additions and the Pascal Triangle)
Torroba, P. L., Trípoli, M. D. L. M., Devece, E., & Aquilano, L. (2017). Funciones trigonométricas y el movimiento armónico simple. In I Congreso Latinoamericano de Ingeniería (CLADI)(Paraná, 13 al 15 de septiembre de 2017).
Zapata, J. H. A., Rojas, Á. M. J., & Martínez, W. A. Á. (2015). Implicaciones pedagógicas de un software de geometría dinámica en la percepción geométrica de las funciones trigonométricas seno, coseno y tangente. Praxis, 11(1), 30-46.