Small product sets in groups P × G
Conjuntos producto pequeño en grupos P × G
Main Article Content
Some problems in number theory can be studied in more general algebraic structures. One of them is the small product sets problem, which consists of finding the minimum cardinality of the set AB, where A and B are non-empty subsets of a group G, of fixed cardinalities. This problem was solved for abelian groups, however, a general solution is not known for the class of non-abelian groups. In this article, we study this problem for groups of the form G=P×G, where P is a finite group and A is an abelian group. As a particular case, we solve the small product sets problem in the class of infinite Hamiltonian groups.
Downloads
Publication Facts
Reviewer profiles N/A
Author statements
Indexed in
- Academic society
- Universidad Francisco de Paula Santander
- Publisher
- Universidad Francisco de Paula Santander
Article Details
Berchenko-Kogan, Y. (2012). Minimum product sets sizes in nonabelian groups. Journal of Number Theory, 132(10). https://doi.org/10.1016/j.jnt.2012.04.011
Cauchy, A.-L. (1813). Recherches sur les nombres. En J. École Polytechnique (pp. 99–123). https://doi.org/10.1017/cbo9780511702501.004
Davenport, H. (1935). On the addition of residue classes. En Journal of the London Mathematical Society (Vols. s1-10, Número 1). https://doi.org/10.1112/jlms/s1-10.37.30
Deckelbaum, A. (2009). Minimum product set sizes in nonabelian groups of order pq. Journal of Number Theory, 129(6). https://doi.org/10.1016/j.jnt.2009.02.006
Eliahou, S., & Kervaire, M. (1998). Sumsets in Vector Spaces over Finite Fields. Journal of Number Theory, 71(1). https://doi.org/10.1006/jnth.1998.2235
Eliahou, S., & Kervaire, M. (2005). Minimal sumsets in infinite abelian groups. Journal of Algebra, 287(2). https://doi.org/10.1016/j.jalgebra.2005.02.014
Eliahou, S., & Kervaire, M. (2006). Sumsets in dihedral groups. European Journal of Combinatorics, 27(4). https://doi.org/10.1016/j.ejc.2003.09.023
Eliahou, S., & Kervaire, M. (2007a). BOUNDS ON THE MINIMAL SUMSET SIZE FUNCTION IN GROUPS. International Journal of Number Theory, 03(04). https://doi.org/10.1142/s1793042107001085
Eliahou, S., & Kervaire, M. (2007b). Some extensions of the Cauchy-Davenport theorem. Electronic Notes in Discrete Mathematics, 28. https://doi.org/10.1016/j.endm.2007.01.077
Eliahou, S., & Kervaire, M. (2007c). Some results on minimal sumset sizes in finite non-abelian groups. Journal of Number Theory, 124(1). https://doi.org/10.1016/j.jnt.2006.09.002
Eliahou, S., & Kervaire, M. (2010). Minimal sumsets in finite solvable groups. Discrete Mathematics, 310(3). https://doi.org/10.1016/j.disc.2009.03.024
Eliahou, S., Kervaire, M., & Plagne, A. (2003). Optimally small sumsets in finite abelian groups. Journal of Number Theory, 101(2). https://doi.org/10.1016/S0022-314X(03)00060-X
Gallian, J. A. (2021). Contemporary abstract algebra. Chapman and Hall/CRC.
https://doi.org/10.1201/9781003142331
Hall, M. (2018). The Theory of Groups. Courier Dover Publications.
Kaur, R., & Singh, S. (2024). Sumsets in dicyclic groups Q4nand Um,n. Communications in Algebra, 52(3). https://doi.org/10.1080/00927872.2023.2259485
Kemperman, J. H. B. (1956). On Complexes in a Semigroup. Indagationes Mathematicae (Proceedings), 59. https://doi.org/10.1016/s1385-7258(56)50032-7
Mutis, W. F., Benavídes, F. A., & Castillo, J. H. (2010). Conjuntos suma pequeños en p-grupos finitos. Revista integración, 28(1), 79–83. https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/2061
Mutis, W. F., Benavides, F. A., & Castillo, J. H. (2012). Conjuntos suma pequeños en grupos hamiltonianos. Revista de la unión matemática argentina, 53(1), 1–9.
Nathanson, M. B., & . (1997). Additive number theory: inverse problems and the geometry of sumsets. Choice Reviews Online, 35(01). https://doi.org/10.5860/choice.35-0343a
Zemor, G. (1994). A generalization to noncommutative groups of a theorem of Mann. Discrete Mathematics, 126(1–3). https://doi.org/10.1016/0012-365X(94)90279-8