Small product sets in groups P × G

Conjuntos producto pequeño en grupos P × G

Main Article Content

Wilson Fernando Mutis-Cantero
Fernando Andrés Benavides-Agredo
Santiago Jimenez-Ramos
Abstract

Some problems in number theory can be studied in more general algebraic structures. One of them is the small product sets problem, which consists of finding the minimum cardinality of the set AB, where A and B are non-empty subsets of a group G, of fixed cardinalities. This problem was solved for abelian groups, however, a general solution is not known for the class of non-abelian groups. In this article, we study this problem for groups of the form G=P×G, where P is a finite group and A is an abelian group. As a particular case, we solve the small product sets problem in the class of infinite Hamiltonian groups.

Downloads

Download data is not yet available.

Publication Facts

Metric
This article
Other articles
Peer reviewers 
0
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
No
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted 
5%
33%
Days to publication 
102
145

Indexed in

Editor & editorial board
profiles
Publisher 
Universidad Francisco de Paula Santander

Article Details

References

Berchenko-Kogan, Y. (2012). Minimum product sets sizes in nonabelian groups. Journal of Number Theory, 132(10). https://doi.org/10.1016/j.jnt.2012.04.011

Cauchy, A.-L. (1813). Recherches sur les nombres. En J. École Polytechnique (pp. 99–123). https://doi.org/10.1017/cbo9780511702501.004

Davenport, H. (1935). On the addition of residue classes. En Journal of the London Mathematical Society (Vols. s1-10, Número 1). https://doi.org/10.1112/jlms/s1-10.37.30

Deckelbaum, A. (2009). Minimum product set sizes in nonabelian groups of order pq. Journal of Number Theory, 129(6). https://doi.org/10.1016/j.jnt.2009.02.006

Eliahou, S., & Kervaire, M. (1998). Sumsets in Vector Spaces over Finite Fields. Journal of Number Theory, 71(1). https://doi.org/10.1006/jnth.1998.2235

Eliahou, S., & Kervaire, M. (2005). Minimal sumsets in infinite abelian groups. Journal of Algebra, 287(2). https://doi.org/10.1016/j.jalgebra.2005.02.014

Eliahou, S., & Kervaire, M. (2006). Sumsets in dihedral groups. European Journal of Combinatorics, 27(4). https://doi.org/10.1016/j.ejc.2003.09.023

Eliahou, S., & Kervaire, M. (2007a). BOUNDS ON THE MINIMAL SUMSET SIZE FUNCTION IN GROUPS. International Journal of Number Theory, 03(04). https://doi.org/10.1142/s1793042107001085

Eliahou, S., & Kervaire, M. (2007b). Some extensions of the Cauchy-Davenport theorem. Electronic Notes in Discrete Mathematics, 28. https://doi.org/10.1016/j.endm.2007.01.077

Eliahou, S., & Kervaire, M. (2007c). Some results on minimal sumset sizes in finite non-abelian groups. Journal of Number Theory, 124(1). https://doi.org/10.1016/j.jnt.2006.09.002

Eliahou, S., & Kervaire, M. (2010). Minimal sumsets in finite solvable groups. Discrete Mathematics, 310(3). https://doi.org/10.1016/j.disc.2009.03.024

Eliahou, S., Kervaire, M., & Plagne, A. (2003). Optimally small sumsets in finite abelian groups. Journal of Number Theory, 101(2). https://doi.org/10.1016/S0022-314X(03)00060-X

Gallian, J. A. (2021). Contemporary abstract algebra. Chapman and Hall/CRC.

https://doi.org/10.1201/9781003142331

Hall, M. (2018). The Theory of Groups. Courier Dover Publications.

Kaur, R., & Singh, S. (2024). Sumsets in dicyclic groups Q4nand Um,n. Communications in Algebra, 52(3). https://doi.org/10.1080/00927872.2023.2259485

Kemperman, J. H. B. (1956). On Complexes in a Semigroup. Indagationes Mathematicae (Proceedings), 59. https://doi.org/10.1016/s1385-7258(56)50032-7

Mutis, W. F., Benavídes, F. A., & Castillo, J. H. (2010). Conjuntos suma pequeños en p-grupos finitos. Revista integración, 28(1), 79–83. https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/2061

Mutis, W. F., Benavides, F. A., & Castillo, J. H. (2012). Conjuntos suma pequeños en grupos hamiltonianos. Revista de la unión matemática argentina, 53(1), 1–9.

Nathanson, M. B., & . (1997). Additive number theory: inverse problems and the geometry of sumsets. Choice Reviews Online, 35(01). https://doi.org/10.5860/choice.35-0343a

Zemor, G. (1994). A generalization to noncommutative groups of a theorem of Mann. Discrete Mathematics, 126(1–3). https://doi.org/10.1016/0012-365X(94)90279-8

Citations

Crossref
Scopus
Europe PMC
OJS System - Metabiblioteca |