Solución de modelos matemáticos, utilizando el software derive en aplicaciones de ecuaciones diferenciales de primer orden

Solución de modelos matemáticos, utilizando el software derive en aplicaciones de ecuaciones diferenciales de primer orden

Main Article Content

Jhon Franklin Espinosa-Castro
Abstract

With the continuous advance of the exact sciences, through technology in different real contexts, we have used mathematical models represented by differential equations that describe the phenomenon to be analyzed, and the solution has allowed to give satisfactory answers in the study and manipulation Of variables. For this reason, the following article was developed, in which different applications of the first order differential equations in biology, chemistry, physics and economics are explained by the mathematical software Derive, using two types of methodology: application and explanatory. Among the topics discussed are two groups; In the first one are: temperature of an object when leaving a furnace, growth of a bacterial colony, load and current of an RC circuit, concentration of salt in a tank with brine and balance of a bank account with continuous interest, Which are determined with respect to the passage of time; And in the second they are valproic acid in the body, contamination of lake Michigan and dating of a fossil with carbon 14, in which a time was found according to the data supplied; Due to the above, only the exercises in the first group have graphs, and are exponential. Finally, it was determined that all the exercises performed had in common the intervention of time. In addition, a dimensionless constant was used depending on the application.

Keywords

Downloads

Download data is not yet available.

Article Details

Author Biography (SEE)

Jhon Franklin Espinosa-Castro, Universidad Experimental Del Tachira

Maestrante
References

G.ZILL, Dennis. Ecuaciones diferenciales con aplicaciones de modelado. 7a edición. Internacional Thomson Learning. México, DF. 2002. p. 22, 98, 99-101, 106.

COSTA, Bronson. Ecuaciones diferenciales. 3a edición. McGraw-Hill Interamericana. México. DF. 2008. p. 68.

H. HALLETT, Deborah. M. GLEASON, Andrew. Cálculo aplicado. 1a edición. Compañía editorial continental. México, DF. 1999. p. 464-467.

SÁNCHEZ RUIZ, Luis M. LEGUA FERNÁNDEZ, Matilde P., MORAÑO, José Antonio. Matemáticas con Derive. Editorial Universidad Politécnica de Valencia. Departamento de matemáticas aplicada. 1a edición. Pdf. p. 225-226, 233-234.

Derive. Disponible en https://es.wikipedia.org/wiki/Derive Consultado 01/09/2011

Modelo matemático. Disponible en https://es.wikipedia.org/wiki/Modelo_matem%C3%A1tico Consulta 01/09/2011

Derive 6.1 demo disponible en http://www.austromath.at/daten/derive/derivedemo.htm Consulta 01/09/2011

OJS System - Metabiblioteca |