On the generalized Kober type fractional q-integral operator involving the basic analogue of the generalized hypergeometric function

Sobre el operador q-integral fraccional generalizado de tipo Kober que envuelve la análoga básica de la función hipergeométrica generalizada

Main Article Content

Jaime Antonio Castillo-Pérez
Leda Galué-Leal
Abstract

This paper aims to apply the generalized fractional q-integral operator of the Kober type established by Castillo and Galué, to the basic analogue of the generalized hypergeometric function. Using the series representation of the operator and the basic analogue of the generalized hypergeometric function, a new result is obtained, which by making appropriate changes in its parameters, is verified to contain generalized forms of the q-fractional integrals of the basic hypergeometric functions e_q (x),E_q (x),J_ν^((1)) (x;q),J_ν^((2)) (x;q),L_n^α (x;q),P_n^((α,β)) (x;q), W_n (x;b,q),S_n (x;p,q) and several elementary q-functions. Such results constitute a new table of integrals, which generalizes those established by other researchers.

Keywords

Downloads

Download data is not yet available.

Article Details

References

Agarwal, R. P. (1960). A q-analogue of MacRobert’s generalized E-function. Ganita, 11, 49-63.

Castillo J., & Galué, L. (2020). On a fractional q-integral operator involving the basic analogue of Fox-Wright function. International Journal of Applied Mathematics, 33(6), 969-994. doi: 10.12732/ijam.v33i6.2. DOI: https://doi.org/10.12732/ijam.v33i6.2

Castillo J., & Galué, L. (2022). On the generalized Kober type fractional q-integral operator involving a basic analogue of H-function. International Journal of Applied Mathematics, 35(2), 249-261; doi: 10.12732/ijam.v35i2.4. DOI: https://doi.org/10.12732/ijam.v35i2.4

Delgado, M., & Galué, L. (2008). Fractional q-integral operator involving basic hypergeometric function. Algebras Groups Geometries, 25, 53-74.

Galué, L. (2009). Generalized Erdérlyi-Kober fractional q-integral operator. Kuwait J. Sci. Eng., 36, 21-34.

Galué, L. (2012). Some results on a fractional q-integral operator involving generalized basic hypergeometric function. Rev. Téc. Ing. Univ. Zulia, 35, 302 -310.

Garg, M., & Chanchlani, L. (2011). Kober fractional q-derivative operators. Le Matematiche, 66, 13-26.

Gasper, G., & Rahman, M. (2004). Basic Hypergeometric Series. Cambridge Univ. Press. DOI: https://doi.org/10.1017/CBO9780511526251

Kalla, S. L., Yadav, R. K., & Purohit, S.D. (2005). On the Riemann-Liouville fractional q-integral operator involving a basic analogue of Fox H-function. Fractional Calculus & Applied Analysis, 8, 313-322.

Saxena, R. K., Modi, G. C., & Kalla, S. L. (1983). A basic analogue of Fox H-function. Rev. Téc. Ing. Univ. Zulia, 6, 139-143.

Saxena, R. K., & Kumar, R. (1990). Recurrence relations for the basic analogue of the H-function. J. Nat. Acad. Math., 8, 48-54.

Saxena, R. K., Yadav, R. K., Purohit, S. D., & Kalla, S. L. (2005). Kober fractional q-integral operator of the basic analogue of the H-function. Rev. Téc. Ing. Univ. Zulia, 28, 154-158.

Yadav, R. K., & Purohit, S. D. (2004). Application of Riemann-Liouville fractional q-integral operator to basic hypergeometric functions. Acta Ciencia Indica, 30, 593-600.

Srivastava, H. M., & Agarwal, A. K. (1989). Generating functions for a class of q-polynomials. Annali di Matematica Pura ed Applicata, 4, 99-109. DOI: https://doi.org/10.1007/BF01790345

Yadav, R. K., & Purohit, S. D. (2006). On applications of Kober fractional q-integral operator to certain basic hypergeometric functions. J. Rajasthan Acad. Phy. Sci., 5, 437-448.

Yadav, R. K., Purohit, S. D., & Kalla, S. L. (2007). Kober fractional q-integral of multiple basic hypergeometric function, Algebras Groups Geometries, 24(i), 55-74.

Yadav, R. K., Kalla, S. L., & Kaur, G. (2010). On fractional q-integral operator involving the basic multiple hypergeometric functions. Algebras Groups Geometries, 27, 97-116.

OJS System - Metabiblioteca |