Axiomatic of the set of musical frequencies in an octave

Axiomática del conjunto de las frecuencias musicales en una octava

Main Article Content

Juan Alberto Molina-García
Abstract

Most of the Works that relate mathematics to musical frequencies are based on the physical phenomenon of harmonics, tuning systems and the theory of well-formed scales. This paper studies the link between musical notes (frequencies) in the frame of an octave and axiomatic set theory, algebra of groups and real analysis. It is demonstrated that the set of musical notes (frequencies) in an octave is well ordered and fulfills the supreme axiom. Furthermore, the set of intervals of musical notes (frequencies) in an octave, with the internal sum operation, has a commutative group structure. Other results from algebraic group theory are also shown.

Keywords

Downloads

Download data is not yet available.

Article Details

References

Abbott, S. (2015). Understanding Analysis. New York: Springer. DOI: https://doi.org/10.1007/978-1-4939-2712-8

https://ndl.ethernet.edu.et/bitstream/123456789/88631/1/2015_Book_UnderstandingAnalysis.pdf

Artin, M. (2011). Algebra. Boston: Pearson.

https://indaga.ual.es/discovery/fulldisplay/alma991001482049704991/34CBUA_UAL:VU1

Assayag, G., Feichtinger, H. G. y Rodrigues, J. F., eds. (2020). Mathematics and Music:

A Diderot Mathematical Forum. Cham, Switzerland: Springer.

https://link.springer.com/book/10.1007/978-3-662-04927-3

Bartle, R. G. y Sherbet, D. R. (2011). Introduction to Real Analysis. Hoboken, New Jersey:

John Willey & Sons.

https://sowndarmath.files.wordpress.co./2017/10/real-analysis-by-bartle.pdf

Benson, D. J. (2006). Music: A Mathematical Offering. Cambridge: Univ. Press.

https://doi.org/10.1017/CBO9780511811722 DOI: https://doi.org/10.1017/CBO9780511811722

https://logosfoundation.org/kursus/music_math.pdf

Bukovský, L. (2011). The Structure of the Real Line. Basel: Birkhäuser. DOI: https://doi.org/10.1007/978-3-0348-0006-8

https://doi.org/10.1007/978-3-0348-006-8

https://link.springer.com/book/10.1007/978-3-0348-0006--8

Castrillón, M. y Domínguez, M. (2013). Un encuentro entre las matemáticas y la teoría

de escalas musicales: Escalas bien formadas. La Gaceta de la RSME, 16, 87-106.

https://gacetarsme.es/abris.php?id=1130

Damschroder, D. y Russell, D. (2013). Music Theory from Zarlino to Schenker: A

Bibliography and Guide. New York: Pendragon Press, Stuyvesant.

https://search.worldcat.org/es/formats-editions/21195293

Fauvel, J. Raymond, F. y Wilson, R. (2003). Music and Mathematics: From Pythagoras DOI: https://doi.org/10.1093/oso/9780198511878.001.0001

to Fractals. Oxford: Oxford University Press.

https://global.oup.com/academic/product/music-and-mathematics-9780199298938

Foreman, M. y Kanamori, A. (eds., 2010). Handbook of Set Theory. New York: Springer. DOI: https://doi.org/10.1007/978-1-4020-5764-9

https://link.springer.com/book/10.1007/978-1-4020-5764-9

Gallian, J. A. (2019). Contemporery Abstract Algebra. Boston: Cengage Learning.

https://www.academia.edu/112184940/Contemporery_Abstract_Algebra_10th_Edition_Gallian?uc-sb-sw=11661181

Goldáraz Gainza, J. J. (1992). Afinación y temperamento en la música occidental. Madrid:

Alianza Música.

https://riunet.upv.es/bitstream/handle/10251/18491/Memoria.pdf?sequence=1

Harkleroad, L. (2006). The Math behind the Music. Cambridge: Cambridge University

Press.

https://archive.org/details/mathbehindmusic0000hark/mathbehindmusic0000hak

Kunen, K. (2011). Set Theory: An Introduction to Independence Proofs. Boca Raton:

Chapman and Hall.

https://shop.elsevier.com/books/set-theory-an-introduction-to-independence-proofs/kunen/978-0-444-86839-8

Maor, E. (2018). Music by the Numbers: From Pythagoras to Schöenberg. Princeton, DOI: https://doi.org/10.23943/9781400889891

New Jersey: Princeton University Press.

https://ieeexplore.ieee.org/document/9453279

Mazzola, S. (2018). The Topos of Music I: Geometric Logic of Concepts, Theory and DOI: https://doi.org/10.1007/978-3-319-64364-9

Performance. Cham, Switzerland: Springer.

https://search.app.goo.gl/YG6G5yY

Mazzola, S. (2018). The Topos of Music II: Performance. Theory, Software and Case DOI: https://doi.org/10.1007/978-3-319-64444-8

Studies. Cham, Switzerland: Springer.

https://link.springer.com/book/10.1007/978-3-319-64444-8

Tymoczko, D. (2011). A Geometry of Music: Harmony and Counterpoint in the

Extended Common Practice. Oxford: Oxford University Press.

https://archive.org/details/OxfordStudiesinMusicTheoryDmitriTymoczkoAGeometryOfMusicHarmonyAndCounterpointin/mode/1up

Wright, D. (2015). The Mathematics of Music: Theory and Compositions. Boca Raton,

Florida: CRC Press.

https://freecomputerbooks.com/Mathematics-and-Music.html

OJS System - Metabiblioteca |