Artificial intelligence techniques applied to the analysis of diagnostic images

Técnicas de inteligencia artificial aplicadas al análisis de imágenes diagnóstico

Main Article Content

Adriana Milena Machacado-Rojas
Lilia Edith Aparicio-Pico
Abstract

The implementation of Artificial Intelligence (AI) in medical procedures has contributed to optimize the prevention and follow-up of some medical treatments. This cutting-edge technology is widely used in the processing of medical imaging because of its efficiency revealing diseases or foreign bodies in a shorter time.


The present article reviews some features, after a compilation of information, on the use of Artificial Intelligence technologies for the diagnosis of diseases by images. To fulfill this, it was needed to inquire about some types of Diagnostic Imaging (DI) like computed tomography, ultrasound, magnetic resonance imaging, and radiology. The inquiry showed that the former type of DI is the most used and known by health centers and laboratories that provide this kind of service in Colombia. This may be due to multiple factors, mainly to its wide availability, its easy performance, and its little used of radiation and low cost. Indeed, its approval as a method in the detection of various diseases is so simple that it does not require further administrative procedures.


Therefore, this review pretends to briefly introduce the reader to technical information in regards medical imaging. First, by presenting some methods and functions. Second, by showing the most recent advances in this field of study and its contribution in mitigating the most recent public health issue called novel coronavirus.

Keywords

Downloads

Download data is not yet available.

Article Details

References

Apostolopoulos, I. D., & Mpesiana, T. A. (2020). Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Physical and Engineering Sciences in Medicine, 43(2), 635–640. https://doi.org/10.1007/s13246-020-00865-4 DOI: https://doi.org/10.1007/s13246-020-00865-4

Battineni, G., Chintalapudi, N., Amenta, F., & Traini, E. (2020). A Comprehensive Machine-Learning Model Applied to Magnetic Resonance Imaging (MRI) to Predict Alzheimer’s Disease (AD) in Older Subjects. Journal of Clinical Medicine, 9(7), 2146. https://doi.org/10.3390/jcm9072146 DOI: https://doi.org/10.3390/jcm9072146

Bekhet, S., Hassaballah, M., Kenk, M. A., & Hameed, M. A. (2020). An Artificial Intelligence Based Technique for COVID-19 Diagnosis from Chest X-Ray. 2nd Novel Intelligent and Leading Emerging Sciences Conference, NILES 2020, 191–195. https://doi.org/10.1109/NILES50944.2020.9257930 DOI: https://doi.org/10.1109/NILES50944.2020.9257930

Born, J., Brändle, G., Cossio, M., Disdier, M., Goulet, J., & Roulin, J. (n.d.). POCOVID-Net : A UTOMATIC D ETECTION OF COVID-19 F ROM A N EW L UNG U LTRASOUND I MAGING D ATASET ( POCUS )

Chen, K. C., Yu, H. R., Chen, W. S., Lin, W. C., Lee, Y. C., Chen, H. H., Jiang, J. H., Su, T. Y., Tsai, C. K., Tsai, T. A., Tsai, C. M., & Lu, H. H. S. (2020). Diagnosis of common pulmonary diseases in children by X-ray images and deep learning. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-73831-5 DOI: https://doi.org/10.1038/s41598-020-73831-5

Elaziz, M. A., Hosny, K. M., Salah, A., Darwish, M. M., Lu, S., & Sahlol, A. T. (2020). New machine learning method for imagebased diagnosis of COVID-19. PLoS ONE, 15(6). https://doi.org/10.1371/journal.pone.0235187 DOI: https://doi.org/10.1371/journal.pone.0235187

Expósito Gallardo, M. del C., & Ávila Ávila, R. (2008). Aplicaciones de la inteligencia artificial en la Medicina: perspectivas y problemas. Acimed, 17(5), 0–0.

Faleiros, M. C., Nogueira-Barbosa, M. H., Dalto, V. F., Júnior, J. R. F., Tenório, A. P. M., Luppino-Assad, R., Louzada-Junior, P., Rangayyan, R. M., & De Azevedo-Marques, P. M. (2020). Machine learning techniques for computer-aided classification of active inflammatory sacroiliitis in magnetic resonance imaging. Advances in Rheumatology, 60(1). https://doi.org/10.1186/s42358-020-00126-8 DOI: https://doi.org/10.1186/s42358-020-00126-8

Fos Guarinos, B. (2016). Diseño de técnicas de inteligencia artificial aplicadas a imágenes médicas de rayos X para la detección de estructuras anatómicas de los pulmones y sus alteraciones. https://riunet.upv.es:443/handle/10251/70103

Grist, J. T., Withey, S., MacPherson, L., Oates, A., Powell, S., Novak, J., Abernethy, L., Pizer, B., Grundy, R., Bailey, S., Mitra, D., Arvanitis, T. N., Auer, D. P., Avula, S., & Peet, A. C. (2020). Distinguishing between paediatric brain tumour types using multi-parametric magnetic resonance imaging and machine learning: A multi-site study. NeuroImage: Clinical, 25(December 2019), 102172. https://doi.org/10.1016/j.nicl.2020.102172 DOI: https://doi.org/10.1016/j.nicl.2020.102172

Huang, Z., Xu, H., Su, S., Wang, T., Luo, Y., Zhao, X., Liu, Y., Song, G., & Zhao, Y. (2020). A computer-aided diagnosis system for brain magnetic resonance imaging images using a novel differential feature neural network. Computers in Biology and Medicine, 121(May), 103818. https://doi.org/10.1016/j.compbiomed.2020.103818 DOI: https://doi.org/10.1016/j.compbiomed.2020.103818

Iturrioz, M., Pascau, J., & Estépar, R. S. J. (2018). EMPHYSEMA QUANTIFICATION ON SIMULATED X-RAYS THROUGH DEEP LEARNING TECHNIQUES ⋆ Applied Chest Imaging Laboratory , Brigham and Women ’ s Hospital , Boston , MA , USA † Dept . de Bioingeniería e Ingeniería Aeroespacial , Universidad Carlos III de Madrid ,. Isbi, 273–276

Le, E. P. V., Wang, Y., Huang, Y., Hickman, S., & Gilbert, F. J. (2019). Artificial intelligence in breast imaging. Clinical Radiology, 74(5), 357–366. https://doi.org/10.1016/j.crad.2019.02.006 DOI: https://doi.org/10.1016/j.crad.2019.02.006

Lee, C., Jang, J., Lee, S., Kim, Y. S., Jo, H. J., & Kim, Y. (2020). Classification of femur fracture in pelvic X-ray images using meta-learned deep neural network. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-70660-4 DOI: https://doi.org/10.1038/s41598-020-70660-4

Nakata, N. (2019). Recent technical development of artificial intelligence for diagnostic medical imaging. Japanese Journal of Radiology, 37(2), 103–108. https://doi.org/10.1007/s11604-018-0804-6 DOI: https://doi.org/10.1007/s11604-018-0804-6

Nguyen, D. T., Kang, J. K., Pham, T. D., Batchuluun, G., & Park, K. R. (2020). Ultrasound image-based diagnosis of malignant thyroid nodule using artificial intelligence. Sensors (Switzerland), 20(7). https://doi.org/10.3390/s20071822 DOI: https://doi.org/10.3390/s20071822

Sarhan, A. M. (2020). Brain Tumor Classification in Magnetic Resonance Images Using Deep Learning and Wavelet Transform. Journal of Biomedical Science and Engineering, 13(06), 102–112. https://doi.org/10.4236/jbise.2020.136010 DOI: https://doi.org/10.4236/jbise.2020.136010

Skandha, S. S., Gupta, S. K., Saba, L., Koppula, V. K., Johri, A. M., Khanna, N. N., Mavrogeni, S., Laird, J. R., Pareek, G., Miner, M., Sfikakis, P. P., Protogerou, A., Misra, D. P., Agarwal, V., Sharma, A. M., Viswanathan, V., Rathore, V. S., Turk, M., Kolluri, R., … Suri, J. S. (2020). 3-D optimized classification and characterization artificial intelligence paradigm for cardiovascular / stroke risk stratification using carotid ultrasound-based delineated plaque : Atheromatic TM 2 . 0. Computers in Biology and Medicine, 125(July), 103958. https://doi.org/10.1016/j.compbiomed.2020.103958 DOI: https://doi.org/10.1016/j.compbiomed.2020.103958

Sotoudeh, H., Tabatabaei, M., Tasorian, B., Tavakol, K., Sotoudeh, E., & Moini, A. L. (2020). Artificial intelligence empowers radiologists to differentiate pneumonia induced by COVID-19 versus influenza viruses. Acta Informatica Medica, 28(3), 190–195. https://doi.org/10.5455/aim.2020.28.190-195 DOI: https://doi.org/10.5455/aim.2020.28.190-195

Tandel, G. S., Balestrieri, A., Jujaray, T., Khanna, N. N., Saba, L., & Suri, J. S. (2020). Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm. Computers in Biology and Medicine, 122(March), 103804. https://doi.org/10.1016/j.compbiomed.2020.103804 DOI: https://doi.org/10.1016/j.compbiomed.2020.103804

Vasconcelos, F. F. X., Sarmento, R. M., Rebouças, P. P., Hugo, V., & Albuquerque, C. De. (2020). Engineering Applications of Artificial Intelligence Artificial intelligence techniques empowered edge-cloud architecture for brain CT image analysis ✩. Engineering Applications of Artificial Intelligence, 91(February), 103585. https://doi.org/10.1016/j.engappai.2020.103585 DOI: https://doi.org/10.1016/j.engappai.2020.103585

Wang, D., Xu, P. D. J., Zhang, M. S. Z., Li, M. S. S., Ph, D., Zhang, X., Zhou, P. D. Y., Zhang, X., Lu, Y., & Ph, D. (2020). Evaluation of Rectal Cancer Circumferential. 1–9. https://doi.org/10.1097/DCR.0000000000001519 DOI: https://doi.org/10.1097/DCR.0000000000001519

Zhang, X., Lin, X., Zhang, Z., Sun, X., Sun, D., & Yuan, K. (2020). Artificial Intelligence Medical Ultrasound Equipment : Application of Breast Lesions Detection. https://doi.org/10.1177/0161734620928453 DOI: https://doi.org/10.1177/0161734620928453

OJS System - Metabiblioteca |