A review of working fluid mixtures for low temperature power cycles and their thermodynamic modeling

Palabras clave: State equation, Power cycle, Organic fluids, Mixtures

Resumen

This paper summarizes a bibliographic review of the main articles published in recent years in the power cycles area, with special emphasis on working fluid mixtures. Likewise, the most relevant theoretical fundaments for performing the mathematical modeling of this class of working fluids and, therefore, obtaining their thermodynamic properties, as well as the experimental methods used in the characterization of the phase equilibrium that allow obtaining the adjustment parameters are covered in this article.

Referencias bibliográficas

IEA, “World energy balances: overview.” IEA, 2018.

“Acolgen – Asociación Colombiana de Generadores de Energía Eléctrica,.” https://www.acolgen.org.co/ (accessed May 02, 2020).

DOE, “Waste Heat Recovery: Technology and Opportunities in U.S. Industry.” 2008, [Online]. Available: U.S Department of Energy.

A. Mahmoudi, M. Fazli, and M. R. Morad, “A recent review of waste heat recovery by Organic Rankine Cycle,” Applied Thermal Engineering, vol. 143, pp. 660–675, Oct. 2018.

C. J. N. Sánchez and A. K. da Silva, “Technical and environmental analysis of transcritical Rankine cycles operating with numerous CO2 mixtures,” Energy, vol. 142, pp.180–190, Jan. 2018. Doi: https://doi.org/10.1016/j.energy.2017.09.120

B. F. Tchanche, Gr. Lambrinos, A. Frangoudakis, and G. Papadakis, “Low-grade heat conversion into power using organic Rankine cycles. A review of various applications,” Renewable and Sustainable Energy Reviews, vol. 15, no. 8, pp. 3963–3979,Oct.2011.Doi: https://doi.org/10.1016/j.rser.2011.07.024.

L. A. de Araujo Passos, S. L. de Abreu, and A. K. da Silva, “Optimal scale of solar-trough powered plants operating with carbon dioxide,” Applied Thermal Engineering, vol. 124, pp. 1203–1212, Sep. 2017. Doi: http://dx.doi.org/10.1016/j.applthermaleng.2017.06.004

A. Modi and F. Haglind, “A review of recent research on the use of zeotropic mixtures in power generation systems,” Energy Conversion and Management, vol. 138, pp. 603–626,Apr.2017.Doi: https://doi.org/10.1016/j.enconman.2017.02.032.

V. L. Le, M. Feidt, A. Kheiri, and S. Pelloux-Prayer, “Performance optimization of low temperature power generation by supercritical ORCs (organic Rankine cycles) using low GWP (global warming potential) working fluids,” Energy, vol. 67, pp. 513–526,Apr.2014. Doi: https://doi.org/10.1016/j.energy.2013.12.027.

I. Sarbu, “A review on substitution strategy of non-ecological refrigerants from vapour compression based refrigeration, air conditioning and heat pump systems,” International Journal of Refrigeration, vol. 46,pp.123–141,Oct.2014,Doi: 10.1016/j.ijrefrig.2014.04.023.

“ScienceDirect.com | Science, health and medical journals, full text articles and books.” https://www.sciencedirect.com/ (accessed Apr 27, 2020).

H. Chen, D. Y. Goswami, and E. K. Stefanakos, “A review of thermodynamic cycles and working fluids for the conversion of low grade heat,” Renewable and Sustainable Energy Reviews, vol. 14, no. 9, pp.3059–3067,Dec.2010.Doi: https://doi.org/10.1016/j.rser.2010.07.006.

C. J. Noriega Sanchez, L. Gosselin, and A. K. da Silva, “Designed binary mixtures for subcritical organic Rankine cycles based on multiobjective optimization,” Energy Conversion and Management, vol. 156, pp. 585–596,Jan.2018.Doi: https://doi.org/10.1016/j.enconman.2017.11.050.

B. Tchanche, S. Quoilin, S. Declaye, G. Papadakis, and V. Lemort, “Economic Optimization of Small Scale Organic Rankine Cycles,” in 23 rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, june. 2010.

J. Bao and L. Zhao, “A review of working fluid and expander selections for organic Rankine cycle,” Renewable and Sustainable Energy Reviews, vol. 24, pp. 325–342, Aug. 2013.Doi: https://doi.org/10.1016/j.rser.2013.03.040.

J. L. Wang, L. Zhao, and X. D. Wang, “A comparative study of pure and zeotropic mixtures in low temperature solar Rankine cycle,” Applied Energy, vol. 87, no. 11, pp. 3366–3373,Nov.2010.Doi: https://doi.org/10.1016/j.apenergy.2010.05.016.

M. Chys, M. van den Broek, B. Vanslambrouck, and M. De Paepe, “Potential of zeotropic mixtures as working fluids in organic Rankine cycles,” Energy, vol. 44, no. 1,pp.623632,Aug.2012.Doi:https://doi.org/10.1016/j.energy.2012.05.030.

D. Luo, A. Mahmoud, and F. Cogswell, “Evaluation of Low-GWP fluids for power generation with Organic Rankine Cycle,” Energy, vol. 85, pp. 481–488, Jun. 2015. Doi: https://doi.org/10.1016/j.energy.2015.03.109

K. Braimakis, M. Preißinger, D. Brüggemann, S. Karellas, and K. Panopoulos, “Low grade waste heat recovery with subcritical and supercritical Organic Rankine Cycle based on natural refrigerants and their binary mixtures,” Energy, vol. 88, pp.80–92,Aug.2015,Doi: 10.1016/j.energy.2015.03.092.

M. Sadeghi, A. Nemati, A. ghavimi, and M. Yari, “Thermodynamic analysis and multi objective optimization of various ORC (organic Rankine cycle) configurations using zeotropic mixtures,” Energy, vol. 109, pp. 791–802, Aug. 2016, Doi: 10.1016/j.energy.2016.05.022.

Y. Feng, T. Hung, K. Greg, Y. Zhang, B. Li, and J. Yang, “Thermoeconomic comparison between pure and mixture working fluids of organic Rankine cycles (ORCs) for low temperature waste heat recovery,” Energy Conversion and Management, vol. 106, pp. 859–872, Dec. 2015. Doi: https://doi.org/10.1016/j.enconman.2015.09.042.

O. A. Oyewunmi and C. N. Markides, “Thermo-Economic and Heat Transfer Optimization of Working-Fluid Mixtures in a Low-Temperature Organic Rankine Cycle System,” Energies, vol. 9, no. 6, p. 448, Jun. 2016.Doi:10.3390/en9060448.

M. G. Zabetakis, Flammability characteristics of combustible gases and vapors. Washington DC: US Dept. of the Interior, 1965.

H. M. M. Afroz and A. Miyara, “Binary mixtures of carbon dioxide and dimethyl ether as alternative refrigerants and their vapor-liquid equilibrium data predicti,” International Journal of Engineering, Science and Technology, vol. 3, no. 1, 2011, Accessed: May 05, 2020. Recuperado de: https://www.ajol.info/index.php/ijest/article/view/67635.

B. Dai, M. Li, and Y. Ma, “Thermodynamic analysis of carbon dioxide blends with low GWP (global warming potential) working fluids-based transcritical Rankine cycles for low-grade heat energy recovery,” Energy, vol. 64, pp. 942–952, Jan. 2014. Doi: https://doi.org/10.1016/j.energy.2013.11.019

G. Shu, Z. Yu, H. Tian, P. Liu, and Z. Xu, “Potential of the transcritical Rankine cycle using CO2 based binary zeotropic mixtures for engine’s waste heat recovery,” Energy Conversion and Management, vol. 174, pp. 668–685,Oct.2018.Doi: https://doi.org/10.1016/j.enconman.2018.08.069.

J. Xia, J. Wang, G. Zhang, J. Lou, P. Zhao, and Y. Dai, “Thermo-economic analysis and comparative study of transcritical power cycles using CO2 based mixtures as working fluids,” Applied Thermal Engineering, vol. 144, pp. 31–44, Nov. 2018. Doi: https://doi.org/10.1016/j.applthermaleng.2018.08.012.

P. Garg, P. Kumar, K. Srinivasan, and P. Dutta, “Evaluation of carbon dioxide blends with isopentane and propane as working fluids for organic Rankine cycles,” Applied Thermal Engineering, vol. 52, no. 2, pp. 439–448,Apr.2013.Doi: https://doi.org/10.1016/j.applthermaleng.2012.11.032.

H. Yin, A. S. Sabau, J. C. Conklin, J. McFarlane, and A. L. Qualls, “Mixtures of SF6–CO2 as working fluids for geothermal power plants,” Applied Energy, vol. 106, pp. 243–253, Jun. 2013. Doi: 10.1016 / j.apenergy.2013.01.060. Recuperado de: https://www.researchgate.net/publication/255813009_Mixtures_of_SF6_CO2_as_working_fluids_for_geothermal_power_plants

L. Pan, X. Wei, and W. Shi, “Performance analysis of a zeotropic mixture (R290/CO2) for trans-critical power cycle,” Chinese Journal of Chemical Engineering, vol. 23, no. 3, pp. 572–577, Mar. 2015. Doi: https://doi.org/10.1016/j.cjche.2014.04.003.

O. Kunz and W. Wagner, “The GERG-2008 Wide-Range Equation of State for Natural Gases and Other Mixtures: An Expansion of GERG-2004,” J. Chem. Eng. Data, vol. 57, no. 11, pp. 3032–3091, Nov. 2012. Doi: https://doi.org/10.1021/je300655b.

NIST, REFPROP Version 9.1. 2013.

J. M. SMITH, H. C. V. NESS, and M. M. ABBOTT, Introdução à termodinâmica da engenharia química, vol. 1. Rio de Janeiro: LTC, 2013.

Y. S. Wei and R. J. Sadus, “Equations of state for the calculation of fluid-phase equilibria,” AIChE Journal, vol. 46, no. 1, pp. 169–196, 2000.Doi:https://doi.org/10.1002/aic.690460119.

D.-Y. Peng and D. B. Robinson, “A New Two-Constant Equation of State,” Ind. Eng. Chem. Fund., vol. 15, no. 1, pp. 59–64, Feb. 1976.Doi: https://doi.org/10.1021/i160057a011

A. Anderko, “4 Cubic and generalized van der waals equations,” in Experimental Thermodynamics, vol. 5, J. V. Sengers, R. F. Kayser, C. J. Peters, and H. J. White, Eds. Elsevier, 2000, pp. 75–126. Doi: https://doi.org/10.1016/S1874-5644(00)80015-6

M. D. Koretsky, Engineering and Chemical Thermodynamics. USA: Willey, 2013.

D. S. H. Wong and S. I. Sandler, “A theoretically correct mixing rule for cubic equations of state,” AIChE Journal, vol. 38, no.5,pp.671–680,1992.Doi: https://doi.org/10.1002/aic.690380505

R. Dohrn and G. Brunner, “High-pressure fluid-phase equilibria: Experimental methods and systems investigated (1988–1993),” Fluid Phase Equilibria, vol. 106, no. 1, pp. 213–282,May1995,doi: https://doi.org/10.1016/03783812(95)02703-H

M. Christov and R. Dohrn, “High-pressure fluid phase equilibria: Experimental methods and systems investigated (1994–1999),” Fluid Phase Equilibria, vol. 202, no. 1, pp. 153–218, Oct. 2002. Doi: https://doi.org/10.1016/S0378-3812(02)00096-1

R. Dohrn, S. Peper, and J. M. S. Fonseca, “High-pressure fluid-phase equilibria: Experimental methods and systems investigated (2000–2004),” Fluid Phase Equilibria, vol. 288, no. 1, pp. 1–54, Jan. 2010.Doi: https://doi.org/10.1016/j.fluid.2009.08.008

R. Dohrn, J. M. S. Fonseca, and S. Peper, “Experimental Methods for Phase Equilibria at High Pressures,” Annual Review of Chemical and Biomolecular Engineering, vol. 3, no. 1, pp. 343–367, 2012.

J. S. Lim, J. M. Jin, and K.-P. Y referencia de articulo de revista, flta doi y url oo, “VLE measurement for binary systems of CO2+1,1,1,2-tetrafluoroethane (HFC-134a) at high pressures,” The Journal of Supercritical Fluids, vol. 44, no. 3, pp. 279–283,Apr.2008.Doi: https://doi.org/10.1016/j.supflu.2007.09.025

G. Di Nicola, C. Di Nicola, A. Arteconi, and R. Stryjek, “PVTx Measurements of the Carbon Dioxide + 2,3,3,3-Tetrafluoroprop-1-ene Binary System,” J. Chem. Eng. Data, vol. 57, no. 2, pp. 450–455, Feb. 2012. Doi: https://doi.org/10.1021/je201051q

N. Juntarachat, A. Valtz, C. Coquelet, R. Privat, and J.-N. Jaubert, “Experimental measurements and correlation of vapor liquid equilibrium and critical data for the CO2 + R1234yf and CO2 + R1234ze(E) binary mixtures,” International Journal of Refrigeration, vol. 47, pp. 141–152, Nov. 2014.Doi: https://doi.org/10.1016/j.ijrefrig.2014.09.001

G. Di Nicola, F. Polonara, G. Santori, and R. Stryjek, “Isochoric PVTx Measurements for the Carbon Dioxide + 1,1-Difluoroethane Binary System,” J. Chem. Eng. Data, vol. 52, no. 4, pp. 1258–1261, Jul. 2007. Doi:

https://doi.org/10.1021/je600583u

G. Di Nicola, M. Pacetti, F. Polonara, and R. Stryjek, “Isochoric Measurements for CO2 + R125 and CO2 + R32 Binary Systems,” J. Chem. Eng. Data, vol. 47, no. 5, pp. 1145–1153, Sep. 2002. Doi: https://doi.org/10.1021/je015541y

G. Di Nicola, F. Polonara, R. Ricci, and R. Stryjek, “PVTx Measurements for the R116 + CO2 and R41 + CO2 Systems. New Isochoric Apparatus,” J. Chem. Eng. Data, vol. 50, no. 2, pp. 312–318, Mar. 2005. Doi: https://doi.org/10.1021/je049939g

F. F. Czubinski, C. J. Noriega Sanchez, A. K. da Silva, M. A. Marcelino Neto, and J. R. Barbosa, “Phase Equilibrium and Liquid Viscosity of CO2 + n-Dodecane Mixtures between 283 and 353 K,” Journal of Chemical & Engineering Data, vol. 64, no. 8, pp. 3375–3384, 2019, doi: 10.1021/acs.jced.9b00187.

F. F. Czubinski, C. J. N. Sanchez, A. K. da Silva, M. A. M. Neto, and J. R. Barbosa, “Phase equilibrium and liquid viscosity data for R-290/POE ISO 22 mixtures between 283 and 353 K,” International Journal of Refrigeration, vol. 114, pp. 79–87, Jun. 2020.Doi: https://doi.org/10.1016/j.ijrefrig.2020.02.029

Cómo citar
Noriega-Sánchez, C. J. (2021). A review of working fluid mixtures for low temperature power cycles and their thermodynamic modeling. Revista Ingenio, 18(1), 62-69. https://doi.org/10.22463/2011642X.2340

Descargas

La descarga de datos todavía no está disponible.
Publicado
2021-01-01
Sección
Artículos de Revisión