Experimental prototype for visual support in the calibration of the precision indicator lights of approach slope, for a landing track using a drone

  • Jorge Enrique Herrera-Rubio Universidad de Pamplona
  • Sergio Andrés Parra-Prada Universidad de Pamplona
Palabras clave: Aircraft Visual aids Calibration Samples

Resumen

Background: The use of calibration methods for visual aids systems in airports guarantees aviation safety with new alternatives and precision methods. Objective: The article shows the implementation of an experimental prototype for the support of visual aid in the calibration of precision indicator lights by means of a drone to improve the approach slopes of aircraft. Method: In each of the experimental tests the following activities were developed: a) execute the program that contains the code to perform the process of emulation / calibration of the lights, b) connect the model of the lights to the Arduino and be connected to the portable equipment, c) perform the drone calibration process each time a flight plan is made, d) connect the mobile device to the drone’s remote control to integrate them into the wireless network (Wi-Fi), e) on the device mobile the application is executed to configure the flight plan and f) the emulation / calibration is performed with the model of the lights. Result: Obtain the best visibility angles according to the effective percentages of experimentation that indicate the accuracy of the experimental system proposed through a mobile application. In addition, this article proposes a methodology for the calibration of the Precision Approach Path Indicator (PAPI) lights through wireless devices. Conclusion: The proposed methodology establishes the basic conditions for the development of the process of supervision, monitoring and calibration of the PAPI lighting system of any track in Colombia according to the regulations on luminous visual aids.

Referencias

Organización de Aviación Civil Internacional, Anexo 14 al Convenio sobre Aviación Civil Internacional. Aeródromos. 2009.

P. Pike, D. L. Ruffini, E. Carome, V. Kubulins, and W. Hills, “( 12 ) United States Patent,” vol. 2, no. 12, 2013.

Airports Authority of India, “MANUAL ONAERODROME LICENSING OF AAI AIRPORTS,”2013.

C. C. Ávila Herrera, “Drones vs. Aeronáutica Civil. Licencias para pilotos y su procedimiento,” Novum Jus, pp. 135–165, 2017.

Oficina Tecnica de Difusion, “Nota de prensa,”Inst. Nac. Estad. e Inform., no. Ldc, pp. 1–4, 2014.

U. A. Civil Aeronaútical, “Normas de Aeronavegabilidad y Operación de Aeronaves,” Reglam. Aeronáuticos Colomb., pp. 199–204, 2009.

F. A. A. Airport and E. Division, “EB 95, Additional Siting and Survey Considerations for Precision Approach Path Indictor (PAPI) and Other Visual Glide Slope Indicators (VGSI), December 19, 2017,” pp. 0–11, 2017.

H. Shen, X. Zhou, W. Zhang, J. Pan, and M. Liu, “Measurement method for the transition width of precision approach path indicator based on spectral means,” vol. 8417, p. 841743, 2012.

K. M. Gildea, D. L. Perry, C. A. Roberts, and L. S. Peterson, “Federal Aviation Administration Usability of Light-Emitting Diodes in Precision Approach Path Indicator Systems by Individuals With Marginal Color Vision,” no. May, 2014.

R. Geister, L. Limmer, M. Rippl, and T. Dautermann, “Total System Error Performance ofDrones for an Unmanned PBN Concept Content - Performance Based Navigation ( PBN ) - PBN for drones - Test Setup - Test Results - Conclusion,” 2018 Integr. Commun. Navig. Surveill. Conf., no. April, pp. 1–12, 2018.

H. Kang* and and Jinhyung Cho, “Case Study on Efficient Android Programming Education using Multi Android Development Tools,” Indian J. Sci. Technol., vol. 8, no. 12, pp. 1–5, 2015. [12] K. Walpole, R. E., Myers, R. H., Myers, S. L.,& Ye, Probabilidad y estadística para ingeniería y ciencias. Norma, 2014.

J. K. Lee, “Android programming techniques for improving performance,” 2011 3rd Int. Conf. Aware. Sci. Technol., pp. 386–389, 2011.

J. Brandt, P. J. Guo, J. Lewenstein, and S. R. Klemmer, “Opportunistic programming: How rapid ideation and prototyping occur in practice,” Proc. 4th WEUSE, pp. 1–5, 2008.

Cómo citar
Herrera-Rubio, J. E., & Parra-Prada, S. A. (2019). Experimental prototype for visual support in the calibration of the precision indicator lights of approach slope, for a landing track using a drone. Respuestas, 24(1), 40-47. https://doi.org/10.22463/0122820X.1795

Descargas

La descarga de datos todavía no está disponible.
Publicado
2019-01-01
Sección
Artículos de Investigación