Evaluation of damage to the lumbar spine vertebrae L5 by finite element analysis

Evaluación del daño en la vértebra lumbar L5 mediante análisis por elementos finitos

  • Sergio Andrés Ardila-Parra Universidad Industrial de Santander
  • Heller Guillermo Sánchez-Acevedo Universidad Industrial de Santander
  • Octavio Andrés González-Estrada Universidad Industrial de Santander
Palabras clave: Bone damage FEA based on image Metastasis Bone segmentation


Bone metastasis to the spine, pelvis or hip in patients with prostate cancer is a pathology that occurs in approximately 80% of cases. Metastases in the spine can cause pain, instability and neurological injuries. Therefore, it is relevant to evaluate when critical conditions have been reached and the structural integrity of the bone is compromised. Numerical methods based on patient data, obtained through post-processing of medical images, provide a tool to model the complexity of the biological tissue material. Computed axial tomography (CT) together with segmentation tools allows the reconstruction of 3D bone models that include mechanical properties, and that represents the anisotropic condition of bone structures. In this work, we present the L5 lumbar vertebra model of a patient affected by metastases and evaluate biomarkers to indicate the level of damage, compared with the reference case of healthy bone in an initial stage.


J. P. Karr, “Prostate Cancer in the United States and Japan,” in Prostate Cancer and Bone Metastasis. Advances in Experimental Medicine and Biology, vol 324, J. P. Karr and H. Yamanaka, Eds. Boston, MA: Springer, 1992, pp. 17–28.

F. E. Lecouvet et al., “Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: Diagnostic and cost-effectiveness and comparison with current detection strategies,” J. Clin. Oncol.,vol. 25, no. 22, pp. 3281–3287, 2007, doi:10.1200/JCO.2006.09.2940.

G. R. Mundy, “Metastasis to bone: Causes, consequences and therapeutic opportunities,” Nat. Rev. Cancer, vol. 2, no. 8, pp. 584–593, 2002, doi:10.1038/nrc867.

Instituto Nacional de Cancerología - Colombia, “Cáncer en cifras,” http://www.cancer.gov.co/cancer_en_cifras, 2018/02/16, 2018.

M. Eleraky, I. Papanastassiou, and F. D. Vrionis, “Management of metastatic spine disease,” Curr. Opin. Support. Palliat. Care, vol. 4, no. 3, pp. 182–188, Sep. 2010, doi:10.1097/SPC.0b013e32833d2fdd.

D. Vanel, J. Bittoun, and A. Tardivon, “MRI of bone metastases,” Eur. Radiol., vol. 8, no. 8, pp. 1345–1351, Sep. 1998, doi:10.1007/s003300050549.

H. K. Genant, K. Engelke, and S. Prevrhal, “Advanced CT bone imaging in osteoporosis,” Rheumatology, vol. 47, no. SUPPL. 4, 2008, doi:10.1093/rheumatology/ken180.

R. Castilla, L. Forero, and O. A. González- Estrada, “Comparative study of the influence of dental implant design on the stress and strain distribution using the finite element method,” J. Phys. Conf. Ser., vol. 1159, p. 012016, Jan. 2018, doi:10.1088/1742-6596/1159/1/012016.

M. Vera et al., “Segmentation of brain tumors using a semi-automatic computational strategy,” J. Phys. Conf. Ser., vol. 1160, p. 012002, 2019, doi:10.1088/1742-6596/1160/1/012002.

E. Nadal Soriano, M. J. Rupérez, S. Martínez Sanchis, C. Monserrat Aranda, M. Tur, and F. J. Fuenmayor, “Evaluación basada en el método del gradiente de las propiedades elásticas de tejidos humanos in vivo,” Rev. UIS Ing., vol. 16, no. 1, pp. 15–22, Oct. 2017, doi:10.18273/revuin.v16n1-2017002.

O. A. González-Estrada, S. Natarajan, J. J. Ródenas, H. Nguyen-Xuan, and S. P. A. Bordas, “Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity,” Comput. Mech., vol. 52, no. 1, pp. 37–52, Sep. 2013, doi:10.1007/s00466-012-0795-6.

M. W. Layton, S. A. Goldstein, R. W. Goulet,L. A. Feldkamp, D. J. Kubinski, and G. G. Bole,“Examination of subchondral bone architecture in experimental osteoarthritis by microscopic computed axial tomography,” Arthritis Rheum., vol. 31, no. 11, pp. 1400–1405, Nov. 1988, doi:10.1002/art.1780311109.

E. Avrahami, R. Tadmor, O. Dally, and H. Hadar,“Early MR Demonstration of Spinal Metastases in Patients with Normal Radiographs and CT and Radionuclide Bone Scans,” J. Comput. Assist. Tomogr., vol. 13, no. 4, pp. 598–602, Jul. 1989,doi:10.1097/00004728-198907000-00008.

S. Schievano et al., “Percutaneous Pulmonary Valve Implantation Based on Rapid Prototyping of Right Ventricular Outflow Tract and Pulmonary Trunk from MR Data,” Radiology, vol. 242, no. 2,pp. 490–497, 2007, doi:10.1148/radiol.2422051994.

F. Valencia-Aguirre, C. Mejía-Echeverria, and V. Erazo-Arteaga, “Desarrollo de una prótesis de rodilla para amputaciones transfemorales usando herramientas computacionales,” Rev. UIS Ing.,vol. 16, no. 2, pp. 23–34, 2017, doi:https://doi.org/10.18273/revuin.v16n2-2017002.

W. C. C. Lee, M. Zhang, X. Jia, and J. T. M. Cheung, “Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket,” Med. Eng. Phys., vol. 26, no. 8, pp. 655–662, 2004, doi:10.1016/j.medengphy.2004.04.010.

S. A. Ardila Parra, O. A. González-Estrada,and J. E. Quiroga Mendez, “Damage Assessment of Spinal Bones due to Prostate Cancer,” Key Eng. Mater., vol. 774, pp. 149–154, 2018, doi:10.4028/www.scientific.net/KEM.774.149.

A. M. Pham, A. A. Rafii, M. C. Metzger, A. Jamali, and E. B. Strong, “Computer modeling and intraoperative navigation in maxillofacial surgery,”Otolaryngol. - Head Neck Surg., vol. 137, no. 4, pp.624–631, 2007, doi:10.1016/j.otohns.2007.06.719.

J. Y. Rho, M. C. Hobatho, and R. B. Ashman, “Relations of mechanical properties to density and CT numbers in human bone,” Med. Eng. Phys., vol. 17, no. 5, pp. 347–355, Jul. 1995, doi:10.1016/1350-4533(95)97314-F.

J. H. Keyak, J. M. Meagher, H. B. Skinner, and C. D. Mote, “Automated three-dimensional finite element modelling of bone: a new method,”J. Biomed. Eng., vol. 12, no. 5, pp. 389–397, Sep. 1990, doi:10.1016/0141-5425(90)90022-F.

E. Schileo, F. Taddei, A. Malandrino, L. Cristofolini, and M. Viceconti, “Subject-specific finite element models can accurately predict strain levels in long bones,” J. Biomech., vol. 40, no. 13, pp. 2982–2989, 2007, doi:10.1016/j.jbiomech.2007.02.010.

A. Nachemson, “The Load on Lumbar Disks in Different Positions of the Body,” Clin. Orthop. Relat. Res., vol. 45, no. 1, pp. 107–122, 1966,doi:10.1097/00003086-196600450-00014.

J. D. Tobin, K. M. Fox, M. L. Cejku, T. A. Roy, R. S. Epstein, and C. C. Plato, “Bone density changes in normal men: a 4–19 year longitudinal study,” J.Bone Miner. Res., vol. 8, no. suppl 1, p. S142, 1993.

T. Suzuki, T. Shimizu, K. Kurokawa, H. Jimbo, J. Sato, and H. Yamanaka, “Pattern of prostate cancer metastasis to the vertebral column.,” Prostate, vol. 25, no. 3, pp. 141–146, 1994.

Cómo citar
Ardila-Parra, S. A., Sánchez-Acevedo, H. G., & González-Estrada, O. A. (2019). Evaluation of damage to the lumbar spine vertebrae L5 by finite element analysis. Respuestas, 24(1), 50-55. https://doi.org/10.22463/0122820X.1804


La descarga de datos todavía no está disponible.
Artículos de Investigación