Measurement of hydraulic conductivity under horizontal paths in granular soils

Medición de la conductividad hidráulica bajo trayectorias horizontales en suelos granulares

Resumen

In geotechnical structures, the permeability-dependent stability analysis is generally evaluated under vertical trajectories, because most permeameters are configured so that the water passes through the porous medium in this way. However, it is clear from the physical point of view that water can flow along different paths, including preferential ways that can include horizontal trajectories, parallel to the deposit of the stratum. The foregoing implies that both the vertical and horizontal component of the hydraulic conductivity or permeability coefficient must be estimated for a given stratum. The current research aims to explore possibilities for measuring the coefficient of permeability in horizontal trajectories, on granular soils, under a constant condition of relative density. For this purpose, a special chamber attached to a constant head permeameter was designed and constructed, which allows to measure the permeability in conditions of horizontal flow parallel to the soil layers. The proposed camera also admits the estimation of the permeability coefficient by combining stratifications of different granular soils, where the trajectories are not perfectly horizontal, but have diagonal paths. The results are compared with data obtained by conventional vertical flow permeameters, in order to check the difference in the measurements considering both situations in the samples. As a conclusion, it is important to report that there is evidently a difference in the permeability coefficients measured under different trajectories

Referencias

Valencia, C. & Triana, J. (2013). Diseño y construcción de un permeámetro para suelos granulares Trabajo de grado de pregrado. Universidad Piloto de Colombia

Leong, E. C., & Rahardjo, H. (1997). Permeability functions for unsaturated soils. Journal of geotechnical and geoenvironmental engineering, 123(12), 1118-1126.

Fredlund, D. G., & Rahardjo, H. (1993). Soil mechanics for unsaturated soils. John Wiley & Sons.

Weeks, L. V., & Richards, S. J. (1967). Soil-Water Properties Computed from Transient Flow Data 1. Soil Science Society of America Journal, 31(6), 721-725.

Juang, C. H., & Holtz, R. D. (1986). A probabilistic permeability model and the pore size density function. International Journal for numerical and analytical methods in geomechanics, 10(5), 543-553.

Garcia-Bengochea, I., Altschaeffl, A. G., & Lovell, C. W. (1979). Pore distribution and permeability of silty clays. Journal of the Geotechnical Engineering Division, 105(7), 839-856.

Romero, E., Gens, A., & Lloret, A. (1999). Water permeability, water retention and microstructure of unsaturated compacted Boom clay. Engineering Geology, 54(1-2), 117-127.
Hyman, J. D., Smolarkiewicz, P. K., & Larrabee Winter, C. (2013). Pedotransfer functions for permeability: a computational study at pore scales. Water Resources Research, 49(4), 2080-2092.
Chapuis, R. P., & Aubertin, M. (2003). On the use of the Kozeny Carman equation to predict the hydraulic conductivity of soils. Canadian Geotechnical Journal, 40(3), 616-628.
Bear, J. (1972). Dynamics of fluids in porous media. Elsevier, New York. Dynamics of fluids in porous media. Elsevier, New York.

Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water resources research, 12(3), 513-522.
Brutsaert, W. (1967). Some methods of calculating unsaturated permeability. Transactions of the ASAE, 10(3), 400-0404.
Burdine, N. (1953). Relative permeability calculations from pore size distribution data. Journal of Petroleum Technology, 5(3), 71-78.
Hyman, J. D., Smolarkiewicz, P. K., & Larrabee Winter, C. (2013). Pedotransfer functions for permeability: a computational study at pore scales. Water Resources Research, 49(4), 2080-2092.
Zhang, X., Li, M. B., Sun, Y. Z., Zhu, Y. T., Yang, Z. H., & Tian, D. H. (2019, March). Study on permeability coefficient of saturated cohesive soil based on fractal theory. In IOP Conference Series: Earth and Environmental Science (Vol. 242, No. 6, p. 062055). IOP Publishing.
Perrier, E., Bird, N., & Rieu, M. (1999). Generalizing the fractal model of soil structure: The pore–solid fractal approach. Geoderma, 88(3-4), 137-164.
Hird, C. C., Pyrah, I. C., & Russel, D. (1992). Finite element modelling of vertical drains beneath embankments on soft ground. Geotechnique, 42(3), 499-511.
Britto, A. M., & Gunn, M. J. (1987). Critical state soil mechanics via finite elements.
Roth, M. J., & Caslake, L. F. (2019). U.S. Patent Application No. 16/175,346.
Vecchia, G. D., & Romero, E. (2013). A fully coupled elastic–plastic hydromechanical model for compacted soils accounting for clay activity. International Journal for Numerical and Analytical Methods in Geomechanics, 37(5), 503-535.
Lapierre, C., Leroueil, S., & Locat, J. (1990). Mercury intrusion and permeability of Louiseville clay. Canadian Geotechnical Journal, 27(6), 761-773.
Simms, P. H., & Yanful, E. K. (2002). Predicting soil—water characteristic curves of compacted plastic soils from measured pore-size distributions. Géotechnique, 52(4), 269-278.
Berkowitz, B., & Ewing, R. P. (1998). Percolation theory and network modeling applications in soil physics. Surveys in Geophysics, 19(1), 23-72.
Hazen, A., 1892. Some physical properties of sands and gravels with special reference to their use in filtration. 24th Annual Report, Massachusetts State Board of Health.
Slichter, C. S., 1899. Theoretical investigation of the motion of ground waters. 19th Annual Reoort, U.S. Geological Survey. 2 : 305.
Terzaghi, K., 1925. Erdbaumechanik, p. 120. Deuticke, Vienna.
Alyamani, M. S., & Şen, Z. (1993). Determination of hydraulic conductivity from complete grain‐size distribution curves. Groundwater, 31(4), 551-555.
Hurtado Osorio, C. (2018). Influencia del porcentaje de finos en la permeabilidad de materiales areno-arcillosos (Master's thesis, Universidad del Norte).
Lu, Z., & Zhang, D. (2003). On importance sampling Monte Carlo approach to uncertainty analysis for flow and transport in porous media. Advances in Water Resources, 26(11), 1177–1188.
Jabro, J. D. (1992). Estimation of saturated hydraulic conductivity of soils from particle size distribution and bulk density data. Transactions of the ASAE, 35(2), 557-560.
Burns Jr, W. A. (1969). New single-well test for determining vertical permeability. Journal of petroleum technology, 21(06), 743-752.
Mukherjee, H., & Economides, M. J. (1991). A parametric comparison of horizontal and vertical well performance. SPE Formation Evaluation, 6(02), 209-216.
Börgesson, L. (1996). Abaqus. In Developments in geotechnical engineering (Vol. 79, pp. 565-570). Elsevier.
Mesri, G., & Olson, R. E. (1971). Mechanisms controlling the permeability of clays. Clays and Clay minerals, 19(3), 151-158.
Olsen, H. W. (1960). Hydraulic flow through saturated clays. Clays and Clay Minerals, 9(1), 131-161.
Moffat, R. A., & Fannin, R. J. (2006). A large permeameter for study of internal stability in cohesionless soils. Geotechnical Testing Journal, 29(4), 273-279.
Tavenas, F., Leblond, P., Jean, P., & Leroueil, S. (1983). The permeability of natural soft clays. Part I: Methods of laboratory measurement. Canadian Geotechnical Journal, 20(4), 629-644.
Hidalgo Mejia, J. (2007). Consolidación De Suelos Visco – Plásticos: generacion de presion de poro y deformaciones diferidas. Tesis de maestria En Ingeniería (Geotecnia). Universidad nacional autonoma de mexico.
Cómo citar
García, M., Aldana, C. A., Lopez, A., Ruge, J., & Martinez, E. (2019). Measurement of hydraulic conductivity under horizontal paths in granular soils. Respuestas, 24(3), 92-101. https://doi.org/10.22463/0122820X.1844

Descargas

La descarga de datos todavía no está disponible.
Publicado
2019-09-01
Sección
Artículos de Investigación