Localización Electrónica en Nanohilos con Estructura Núcleo-Corteza en Presencia de Campos Externos

Electronic localization in Hexagonal Core-Shell Nanowires Under External Fields

Contenido principal del artículo

Angie Nicole Hernández-Durán
Willian Gutiérrez-Niño
David Alejandro Miranda-Mercado

Resumen

A partir de la aproximación de electrón libre dentro de un semiconductor, se realizó análisis numérico del espectro energético y la densidad de probabilidad electrónica de un electrón dentro de un nanohilo hexagonal con estructura núcleo-corteza. En el análisis se consideró el efecto de aplicar un campo magnético en la dirección de crecimiento del nanohilo y se resolvió numéricamente la ecuación de Schrödinger para el electrón localizado en el plano transversal de la estructura en presencia del campo externo; los cálculos se realizaron por medio de elementos finitos implementados con COMSOL Multiphysics®. Los resultados obtenidos permitieron identificar capas energéticas, compuestas, cada una, de seis niveles. Estas capas se atribuyen a la geometría hexagonal conformada por seis pozos de potencial creados debido al abrupto cambio de dirección de los bordes de la estructura. Adicionalmente, se observaron las oscilaciones Aharonov-Bohm del sistema para una estructura con grosor significativo de la capa.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

C. Thelander, P. Agarwal, S. Brongersma, J. ymery, L.-F. Feiner, A.Forchel, M. Sche er, W. Riess, B. Ohlsson, U. Gösele et al., “Nanowire-based one-dimensional electronics,” Materials today, vol. 9, no. 10, pp. 28–35, 2006.

Z. Wang and B. Nabet, “Nanowire optoelectronics,” Nanophoto-nics, vol. 4, no. 1, pp. 491–502, 2015.

K. Pathakoti, M. Manubolu, and H.-M. Hwang, “Nanostructures: Current uses and future applications in food science,” Journal of food and drug analysis, vol. 25, no. 2, pp. 245–253, 2017.

S. S. Bhinder and P. Dadra, “Application of nanostructures and new nano particles as advanced biomaterials,” Asian J Chem, vol. 21, p. S167, 2009.

J. Esper, P. V. Panetta, M. Ryschkewitsch, W. Wiscombe, and S. Neeck, “Nasa-gsfc nano-satellite technology for earth scien-ce missions,” Acta Astronautica, vol. 46, no. 2-6, pp. 287–296, 2000.

J. Wallentin, N. Anttu, D. Asoli, M. Hu man, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzig-mann et al., “Inp nanowire array solar cells achieving 13.8 % ef-ficiency by exceeding the ray optics limit,” Science, pp. 123–969, 2013.

M. Currie, Z. Wang, P. Dianat, P. Prete, I. Miccoli, N. Lo-vergine, and B. Nabet, “Large light emission enhancement in gaas/algaas coreshell nanowires,” in International Conference on One-Dimensional Nanomaterials, ICON2013, Annecy, France, 2013.

X. Yuan, D. Saxena, P. Caro , F. Wang, M. Lockrey, S. Mokka-pati, H. H. Tan, and C. Jagadish, “Strong amplified spontaneous emission from high quality gaas1–x sb x single quantum well na-nowires,” The Journal of Physical Chemistry C, vol. 121, no. 15, pp. 8636–8644, 2017.

N. Sköld, L. S. Karlsson, M. W. Larsson, M.-E. Pistol, W. Seifert, J. Trägårdh, and L. Samuelson, “Growth and optical properties of strained gaas- ga x in1-x p core- shell nanowires,” Nano letters, vol. 5, no. 10, pp. 1943–1947, 2005.

J. Richters, T. Voss, D. Kim, R. Scholz, and M. Zacharias, “En-hanced surface-excitonic emission in zno/al2o3 core–shell nano-wires,” Nanotechnology, vol. 19, no. 30, p. 305202, 2008.

L.-F. Cui, R. Ru o, C. K. Chan, H. Peng, and Y. Cui, “Crystalline-amorphous core- shell silicon nanowires for high ca-pacity and high current battery electrodes,” Nano letters, vol. 9, no. 1, pp. 491–495, 2008.

S. Furthmeier, F. Dirnberger, M. Gmitra, A. Bayer, M. Forsch, J. Hubmann, C. Schüller, E. Reiger, J. Fabian, T. Korn et al., “Enhanced spin–orbit coupling in core/shell nanowires,” Nature communications, vol. 7, 2016.

M. Hu, K. P. Giapis, J. V. Goicochea, X. Zhang, and D. Poulika-kos, “Significant reduction of thermal conductivity in si/ge core-shell nanowires,” Nano letters, vol. 11, no. 2, pp. 618–623, 2010.

M. Tchernycheva, L. Travers, G. Patriarche, F. Glas, J.-C. Har-mand, G. E. Cirlin, and V. G. Dubrovskii, “Au-assisted molecular beam epitaxy of inas nanowires: Growth and theoretical analy-sis,” Journal of Applied Physics, vol. 102, no. 9, 2007.

T. Rieger, M. Luysberg, T. Schäpers, D. Grützmacher, and M.-I. Lepsa, “Molecular beam epitaxy growth of gaas/inas core– shell nanowires and fabrication of inas nanotubes,” Nano letters, vol. 12, no. 11, pp. 5559–5564, 2012.

M. Koguchi, H. Kakibayashi, M. Yazawa, K. Hiruma, and T. Katsuyama, “Crystal structure change of gaas and inas whis-kers from zinc-blende to wurtzite type,” Japanese journal of ap-plied physics, vol. 31, no. 7R, pp. 20–61, 1992.

L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, “Epi-taxial core–shell and core–multishell nanowire heterostructures,” Nature, vol. 420, no. 6911, p. 57, 2002.

X. Cartoixà, M. Palummo, H. I. T. Hauge, E. P. Bakkers, and R. Rurali, “Optical emission in hexagonal sige nanowires,” Nano letters, vol. 17, no. 8, pp. 4753–4758, 2017.

J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “Gaas core- shell nanowires for photovoltaic applications,” Nano letters, vol. 9, no. 1, pp. 148–154, 2008.

H.-K. Chang and S.-C. Lee, “The growth and radial analysis of si/ge core-shell nanowires,” Applied Physics Letters, vol. 97, no. 25, p. 251912, 2010.

M. U. Torres, A. Sitek, S. I. Erlingsson, G. Thorgilsson, V. Gud-mundsson, and A. Manolescu, “Conductance features of core-shell nanowires determined by their internal geometry,” Physical Review B, vol. 98, no. 8, 2018.

B. M. Wong, F. Léonard, Q. Li, and G. T. Wang, “Nanoscale ef-fects on heterojunction electron gases in gan/algan core/shell na-nowires,” Nano letters, vol. 11, no. 8, pp. 3074–3079, 2011.

N. Luo, G.-Y. Huang, G. Liao, L.-H. Ye, and H. Xu, “Band-inverted gaps in inas/gasb and gasb/inas core-shell nanowires,” Scientific reports, vol. 6, 2016.

L. García, I. Mikhailov, and H. Paredes, “E ect of conduction band nonparabolicity on aharonov-bohm oscillations in n-type inas/gaas quantum ring,” in Journal of Physics: Conference Se-ries, vol. 935. IOP Publishing, 2017.

N. Kleemans, I. Bominaar-Silkens, V. Fomin, V. Gladilin, D. Gra-nados, A. G. Taboada, J. García, P. O ermans, U. Zeitler, P. Christianen et al., “Oscillatory persistent currents in self-assembled quantum rings,” Physical review letters, vol. 99, no. 14, 2007.

J. Marin, Y. Suaza, and I. Mikhailov, “Hydrogen-like donor in a core-shell nanowire under electric and magnetic fields,” Chemical Physics Letters, vol. 709, pp. 88–95, 2018.

E. Niculescu and A. Radu, “Laser-induced diamagnetic anisotropy of coaxial nanowires,” Current Applied Physics, vol. 10, no. 5, pp 1354-1359, 2010.

S.-K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.- G. Park, and C. M. Lieber, “Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological de-sign,” Nano letters, vol. 12, no. 9, pp. 4971–4976, 2012.

P. Corfdir, O. Marquardt, R. B. Lewis, C. Sinito, M. Ramsteiner, A. Trampert, U. Jahn, L. Geelhaar, O. Brandt, and V. M. Fomin, “Excitonic aharonov–bohm oscillations in core–shell nanowires,” Advanced Materials, vol. 31, no. 3, p. 1805645, 2019.

E. Switkes, E. L. Russell, and J. L. Skinner, “Kinetic energy and path curvature in bound state systems,” The Journal of Chemical Physics, vol. 67, no. 7, pp. 3061–3067, 1977.

A. Ballester, J. Planelles, and A. Bertoni, “Multi-particle states of semiconductor hexagonal rings: Artificial benzene,” Journal of Applied Physics, vol. 112, no. 10, 2012.

P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.-J. Choi, “Controlled growth of zno nanowires and their optical properties,” Advanced Functional Materials, vol. 12, no. 5, pp. 323–331, 2002.

M. Burt, “The justification for applying the e ective-mass ap-proximation to microstructures,” Journal of Physics: Condensed Matter, vol. 4, no. 32, 1992.

I. Vurgaftman, J. á. Meyer, and L. á. Ram-Mohan, “Band parame-ters for iii–v compound semiconductors and their alloys,” Journal of applied physics, vol. 89, no. 11, pp. 5815–5875, 2001.

F. Haas, K. Sladek, A. Winden, M. Von der Ahe, T. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardt-degen, “Nanoimprint and selective-area movpe for growth of gaas/inas core/shell nanowires,” Nanotechnology, vol. 24, no. 8, 2013.

R. M. G. Francis A. Carey, Organic Chemistry. McGraw Hill, 2011.

A. Bruno-Alfonso and A. Latgé, “Aharonov-bohm oscillations in a quantum ring: Eccentricity and electric-field e ects,” Physical Review B, vol. 71, no. 12, 2005.