Análisis Técnico-económico de [Bmim][BF4] para la captura de CO2 de post-combustión de la planta termoeléctrica de “Termocentro”

Technical-economic analysis of [Bmim][BF4] for the post-combustion CO2 capture at ”Termocentro” thermoelectric plant, Colombia

Contenido principal del artículo

Resumen

En el presente trabajo, las simulaciones de estado estacionario del ciclo combinado de gas natural (NGCC) y los procesos de captura de CO2 poscombustión (PCC) se han modelado en el entorno Aspen Plus®. El modelo del plan de captura fue validado con datos de la central colombiana "Termocentro" a 300MWe. Se ha realizado un estudio de evaluación tecno-económico tanto para un ciclo combinado (gas y vapor) como para el proceso PCC. El proceso de PCC se basó en el disolvente 30% (p / p) MEA-H2O y en el disolvente H2O-30% (p / p) -MEA-5% (p / p)) - [Bmim] [Bf4]. Se llevó a cabo un análisis de sensibilidad, dando como resultado una concentración óptima del 5% (p / p) para el disolvente líquido iónico de tetrafluoroborato de 1-butil-3-metilimidazolio ([Bmim] [BF4]). El estudio indica cómo con condiciones de operación eficientes de regeneración de solventes, [Bmim] [Bf4] puede usarse para planes de captura de CO2 en el futuro.

Palabras clave

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Walter David Sánchez-Peinado, Universidad de Pamplona

Ingeniero Química, Universidad de Pamplona

Docente, Universidad de Pamplona

Edwin Gustavo Fuentes-Ordoñez, Universidad de Cartagena

Ingeniero Químico, Universidad Industrial de Santander

Maestría/Magister Universidad del País Vasco/Euskal Herriko Unibertsitatea
Ingeniería de Procesos Químicos y Desarrollo Sostenible

Doctorado Universidad del País Vasco/Euskal Herriko Unibertsitatea
Ingeniería de Procesos Químicos y Desarrollo Sostenible

Referencias

IPCC, Mitigation of Climate Change - Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2014. DOI: 10.1017/CBO9781107415416

A. Kijewska and A. Bluszcz, (2016). “Analysis of greenhouse gas emissions in the European Union member states with the use of an agglomeration algorithm”, J. Sustain. Min, vol. 15, pp. 133–142, 2016. DOI: 10.1016/J.JSM.2017.02.001

L. Liu, J. Zhao, S. Deng and Q. An, “A technical and economic study on solar-assisted ammonia-based post-combustion CO2 capture of power plant”, Appl. Therm. Eng, vol. 102, pp. 412–422, 2016. DOI: 10.1016/J.APPLTHERMALENG.2016.03.154

M. Ramdin, T.W. De Loos, and T. Vlugt, “State-of-the-art of CO2 capture with ionic liquids”, Ind. Eng. Chem. Res, vol. 51, pp. 8149–8177, 2012. DOI: 10.1021/ie3003705

D. Leung, G. Caramanna, and M. Maroto-Valer, (2014). “An overview of current status of carbon dioxide capture and storage technologies” Renewable Sustainable Energy Rev., vol. 39, pp. 426–443, 2014. DOI:10.1016/J.RSER.2014.07.093

M. Abu-Zahra, L. Schneiders, J. Niederer, P. Feron, and G. Versteeg, “CO2 capture from power plants. Part I. A parametric study of the technical performance based on monoethanolamine”, Int. J. Greenh. Gas Control, vol.1, pp. 37–46, 2007. DOI:10.1016/S1750-5836(06)00007-7

J. Davis, and G. Rochelle, “Thermal degradation of monoethanolamine at stripper conditions”, Energy Procedia, vol.1, pp. 327–333, 2009. DOI:10.1016/j.egypro.2009.01.045

R. Canepa, and M. Wang, “Techno-economic analysis of a CO2capture plant integrated with a commercial scale combined cycle gas turbine (CCGT) power plant”, Appl. Therm. Eng, vol. 74, pp.10–19, 2015. DOI:10.1016/j.applthermaleng.2014.01.014

M. Sharifzadeh and N. Shah, “ Carbon capture from natural gas combined cycle power plants: Solvent performance comparison at an industrial scale”. AIChE Journal, vol. 62, pp 166-179, 2016. DOI:10.1002/aic.15072

M. Hasib-ur-Rahman, M. Siaj, and F. Larachi, “ Ionic liquids for CO2 capture—Development and progress”, Chem. Eng. Process, vol.49, pp. 313–322, 2010.DOI:10.1016/J.CEP.2010.03.008

B. Janković, N.Manić, R. Buchner, I. Płowaś-Korus, A. Pereiro, and E. Amado-González, “Dielectric properties and kinetic analysis of nonisothermal decomposition of ionic liquids derived from organic acid. Thermochim.Acta, vol. 672, pp, 43–52, 2019. DOI:10.1016/J.TCA.2018.12.013

A. Krzemień, A. Więckol-Ryk, A. Smoliński, A. Koteras, and L. Więcław-Solny, “Assessing the risk of corrosion in amine-based CO2 capture process”, J. Loss. Prev. Process Ind, vol. 43, pp.189–197, 2016. DOI:10.1016/J.JLP.2016.05.020

Y. Zhang, H. Chen, C. Chen, J. Plaza, R. Dugas, and G. Rochelle, “Rate-based process modeling study of CO2 Capture with aqueous monoethanolamine solution”, Ind. Eng. Chem. Res., vol. 48, pp.9233–9246, 2009. DOI: 10.1021/ie900068k

B, Zacchello, E. Oko, M. Wang, and A. Fethi, “ Process simulation and analysis of carbon capture with an aqueous mixture of ionic liquid and monoethanolamine solvent”. Int. J. Coal Sci. Technol., vol. 4,pp. 25–32, 2017. DOI:10.1007/s40789-016-0150-1

Y. Huang, X. Zhang, X. Zhang, H. Dong, and S. Zhang, “ Thermodynamic Modeling and Assessment of Ionic Liquid-Based CO2 Capture Processes”, Ind. Eng. Chem. Res., vol.53, pp.11805–11817, 2014. DOI:10.1021/ie501538e

T. Ma, J.Wang, Z. Du, A. Abdeltawab, A. Al-Enizi, X. Chen, and G. Yu, “A process simulation study of CO2 capture by ionic liquids” Int. J. Greenh. Gas Control. Vol.58, pp. 223–231, 2017. DOI:10.1016/j.ijggc.2017.01.017

J. de Riva, J. Suarez-Reyes, D. Moreno, I. Dïaz, V. Ferro, and J. Palomar, “Ionic liquids for post-combustion CO2 capture by physical absorption: Thermodynamic, kinetic and process analysis”, International Journal of Greenhouse Gas Control, vol.61, pp. 61–70, 207. DOI:10.1016/j.ijggc.2017.03.019

ISAGEN. Isagen, Energía productiva. Central térmica termocentro. [Online]. Available: https://www.isagen.com.co/es/web/guest/home [Accessed: 08-Apr-2019]

F. Guerrero Suarez, and F,Llano Camacho, “Gas natural en Colombia", Estudios Generenciales, núm. 87, abril-junio, 2003, pp. 115-146, 2003. [Online]. Available: https://www.redalyc.org/pdf/212/21208706.pdf [Accessed:23-Apr-2019]

D. Peng, and D. Robinson, “A New Two-Constant Equation of State”, Ind. Eng. Chem. Fundam, vol.15, pp. 59–64, 1976. DOI: 10.1021/i160057a011

P. Mathias, and T. Copeman, “Extension of the Peng-Robinson equation of state to complex mixtures: Evaluation of the various forms of the local composition concept”, Fluid Ph. Equilibria,vol.13, pp.91–108, 1983. DOI:10.1016/0378-3812(83)80084-3

Y. Huang, X. Zhang, X. Zhang, H. Dong, and S. Zhang, “Thermodynamic Modeling and Assessment of Ionic Liquid-Based CO2 Capture Processes”, Ind. Eng. Chem. Res.,vol.53, pp.11805–11817, 2014. DOI:10.1021/ie501538e

G. Soave, “Equilibrium constants from a modified Redlich-Kwong equation of state”, Chem. Eng. Sci., vol.27, pp.1197–1203, 1972. DOI:10.1016/0009-2509(72)80096-4

C. Chen, H. Britt, J. Boston, and L. Evans, “Local composition model for excess Gibbs energy of electrolyte systems. Part I: Single solvent, single completely dissociated electrolyte systems”, AIChE J., vol. 28, pp.588–596, 1982. DOI: 10.1002/aic.690280410

C. Chen, and L. Evans, “A local composition model for the excess Gibbs energy of aqueous electrolyte systems”, AIChE J., vol 32, pp. 444–454, 1986. DOI:10.1002/aic.690320311

H.Que, and C, Chen, “Thermodynamic Modeling of the NH3 - CO2-H2O System with Electrolyte NRTL Model” Ind. Eng. Chem. Res.,vol.50, pp.11406–11421,2011. DOI:10.1021/ie201276

Y. Zhang, H. Que, and C. Chen, “ Thermodynamic modeling for CO2 absorption in aqueous MEA solution with electrolyte NRTL model”, Fluid Ph. Equilibria, vol. 311, pp. 67–75, 2011. DOI: 10.1016/j.fluid.2011.08.025

Y. Liu, L. Zhang, and S. Watanasiri, “Representing Vapor−Liquid Equilibrium for an Aqueous MEA−CO2 System Using the Electrolyte Nonrandom-Two-Liquid Model”, Ind. Eng. Chem. Res., vol. 38, pp.2080–2090, 1999. DOI:10.1021/ie980600v

Y.Yan, and C. Chen, “Thermodynamic modeling of CO2 solubility in aqueous solutions of NaCl and Na2SO4”, J. Supercritical Fluids, 55(2), 623–634, 2010. DOI:10.1016/j.supflu.2010.09.039

X. Luo, and M. Wang, “Improving Prediction Accuracy of a Rate-Based Model of an MEA-Based Carbon Capture Process for Large-Scale Commercial Deployment”, Engr., vol.3, pp. 232–243, 2017. DOI:10.1016/J.ENG.2017.02.001

E. Agbonghae, K. Hughes, D. Ingham, L. Ma, and M. Pourkashanian, “ Optimal Process Design of Commercial-Scale Amine-Based CO 2 Capture Plants”, Ind. Eng. Chem. Res.,vol.53, pp. 14815–14829, 2014. DOI:10.1021/ie5023767

R. Sinnot, “Chemical Engineering Design”, Elsevier, 6th Edition, 2019.

DECARBit, “Enabling advanced pre-combustion capture techniques and plants”, CORDIS, Project Reference: 211971, 2008. [Online]. https://www.sintef.no/en/projects/decarbit-enabling-advanced-pre-combustion-capture-/ [Accessed:23-Feb-2019]

R. James, D. Kearins, M. Turner, M. Woods, N. Kuehn, and A. Zoelle, “Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity”, Technical report, 2019. DOI: 10.2172/1569246 [Online]. https://www.osti.gov/biblio/1569246-cost-performance-baseline-fossil-energy-plants-volume-bituminous-coal-natural-gas-electricity [Accessed:23-Feb-2019]

S. Lemmens, “Cost Engineering Techniques and Their Applicability for Cost Estimation of Organic Rankine Cycle Systems”, Energies, vol.9, pp.2-18, 2016. DOI: 10.3390/en9070485

IEAGHG, “CO2 capture at gas fired power plants”, Report 2012/8, IEA Environmental Projects Ltd. (IEAGHG), 2012. [Online]. https://ieaghg.org/docs/General_Docs/Reports/2012-08.pdf [Accessed:27-Feb-2019]

B. Metz, O. Davidson, H. Coninck, M. de, Loos, and L. Mayer, “IPCC special report on carbon dioxide capture and storage. Intergovernmental Panel on Climate Change”. Cambridge University Press, 2005. [Online]. https://www.researchgate.net/publication/239877190 [Accessed:27-Feb-2019]

Sistema OJS - Metabiblioteca |