Trayectoria de secado de una Curva de Retención de Agua (WRC) en mezclas asfálticas

Drying path of a Water Retention Curve (WRC) on asphalt mixtures

Contenido principal del artículo

Juan Carlos Ruge - Cárdenas
Oscar Reyes - Ortiz
Javier Camacho - Tauta
Resumen

El comportamiento no saturado de los materiales bituminosos ha sido poco estudiado en la actualidad. Sin embargo, la interacción atmósfera-capa asfáltica en cuanto a los cambios de humedad, ha obligado a diferentes especificaciones o estándares mundiales a considerar oportuno vincular en los diseños la variable que controla esta respuesta, conocida como succión. Esto se debe a que es la capa más expuesta a los cambios atmosféricos, por lo tanto, posee cierta susceptibilidad a grandes cambios higrométricos. Para observar los cambios en ciertos rangos de humedad de succión, se requiere la construcción de la curva de retención de agua (WRC), que indica el valor único del tándem humedad-succión para un material dado. La succión en los especímenes de esta investigación se ha medido utilizando un método tradicional de papel de filtro, ampliamente utilizado en otros tipos de geomateriales. Hasta ahora la succión en mezclas asfálticas solo se ha medido con psicrómetros, induciendo procesos invasivos dentro de la muestra que pueden alterar los resultados. El método del papel filtro solo permite obtener la trayectoria de secado del material; por lo tanto, no se puede obtener la histéresis probable del WRC. Los resultados muestran una curva restringida, tanto en valores de humedad como en el espectro de succión. Sin embargo, revelan valores de succión que nunca son considerados en las etapas de entendimiento básico del comportamiento mecánico del material, especialmente para fines de diseño.

Palabras clave

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias

D. Fredlund, “Unsaturated soil mechanics in engineering practice”, Journal of Geotechnical and Geoenvironmental Engineering, vol. 132, pp. 286–321, 2006.

J.C. Ruge, “Artificial modelling of unsaturated tests considering the suction control on porous collapsible clay”, Journal of Physics: Conf. Series, vol. 1386, no 012116, 2019

American Society for Testing and Materials (ASTM), “Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper”, ASTM D5298-16 (United States: American Society for Testing and Materials), 2016

E. Kassem, “Measurements of moisture suction in hot mix asphalt mixes,” M.S Thesis, College Station: Texas A&M University, USA, 2005

E. Kassem, E. Masad, R. Bulut and R. Lytton, “Measurements of Moisture Suction and Diffusion Coefficient in Hot-Mix Asphalt and Their Relationships to Moisture Damage”, Transportation Research Record Journal of the Transportation Research Board, vol. 1, no. 45, 2006

S. Caro, E. Masad, A. Bhasin and N. Little, “Moisture susceptibility of asphalt mixtures, Part 1: mechanisms”, International Journal of Pavement Engineering, vol. 9, no 2, pp. 81-89, 2008

E. Rueda, S. Caro and B. Caicedo, “Mechanical response of asphalt mixtures under partial saturation conditions”, Road Materials and Pavement Design, vol. 20, pp. 1291-1305, 2012

R.H. Brooks R and A.T. Corey, “Hydraulic properties of porous media”. Hydrology papers, vol. 3, no. 27, 1964

M. Th. van Genuchten, “A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils”, Soil Science Society of America Journal, vol. 44, pp. 892-98, 1980

D. Fredlund and A. Xing, “Equations for the soil-water characteristic curve”, Canadian Geotechnical Journal, vol. 31, no. 3, pp. 521-23, 1994

D. Fredlund and H. Rahardjo. Soil mechanics for unsaturated soils. New Jersey: Wiley, 1993

A. Taylor, Mark, and N Khosla Paul, “Stripping of Asphalt Pavements: State of the Art 625 (Discussion, Closure).” Transportation Research Record, no. 911 pp. 150–58, 1983.

C. Benson and M. Gribb, “Measuring unsaturated hydraulic conductivity in the laboratory and field”, ASCE Geotechnical Special Publication, vol. 68, pp. 113–168, 1997

Y. Cui, A. Tang, C. Loiseau and P. Delage, “Determining the unsaturated hydraulic conductivity of a compacted sand–bentonite mixture under constant-volume and free-swell conditions”, Physics and Chemistry of the Earth, Parts A/B/C pp. 462-S471, 2008

G. Cai, A. Zhou, and D. Sheng, “Permeability function for unsaturated soils with different initial densities”. Canadian Geotechnical Journal, vol. 51, pp. 1456-1467, 2014

L.C. Galvis, L.C.A. Galvis, J.C. Ruge, L. Pulgarin, J.G. Bastidas and M.C. Olarte, “Measurement of permeability coefficient in porous media under unsaturated paths”. DYNA, vol. 88, no. 219, pp.123-130.

B. Caicedo, O. Coronado, J.M. Fleureau, and A.G. Correia, “Resilient behaviour of non-standard unbound granular materials”, Road Materials and Pavement Design, vol. 10, no. 2, pp. 287–312, 2009.

C.E. Cary ad E.C. Zapata, “Resilient modulus for unsaturated unbound materials”, Road Mater Pavement Des, vol. 12, no. 3, pp. 615-638, 2011

J.W. Pappin, S.F. Brown and M.P O’Reilly, “Effective stress behaviour of saturated and partially saturated granular material subjected to repeated loading”, Géotechnique, vol. 42, no. 3, pp. 485–497, 1992

M.S. Jin, K.W. Lee, and W.D. Kovacs, “Seasonal variation of resilient modulus of subgrade soils”, Journal of Transportation Engineering, vol. 120, no. 4, pp. 603–616, 1994

C.E. Zapata, D. Andrei, M.W. Witczak and W.N. Houston, “Incorporation of environmental effects in pavement design”. Road Materials and Pavement Design, vol. 8, no. 8, pp. 667–693, 2007

B. Caicedo, M. Ocampo, L. Vallejo and J. Monroy, “Hollow cylinder apparatus for testing unbound granular materials of pavements”. Road Materials and Pavement Design, vol. 13, no. 3, pp. 455–479, 2012

O. Coronado, B. Caicedo, S. Taibi, A.G. Correia, H. Souli and J.M. Fleureau, “Effect of water content on the resilient behavior of non-standard unbound granular materials”. Transportation Geotechnics, vol. 7, pp. 29–39, 2016

Y. Tong, R. Luo and R. Lytton, “Modeling water vapor diffusion in pavement and its influence on fatigue crack growth of fine aggregate mixture”, Transportation Research Record: Journal of the Transportation Research Board, vol. 2373, pp. 71–80, 2013

K. Henry, J.C. Petura, S. Brooks, S. Dentico, S. Kessel and M. Harris, “Preventing surface deposition of chromium with asphalt caps at chromite ore processing residue sites: A case study”, Canadian Geotechnical Journal, vol. 44, pp. 814–839, 2007

R.E. Pease, “Hydraulic properties of asphalt concrete”. PhD. dissertation, University of New Mexico, USA, 2010

American Society for Testing and Materials (ASTM), “Standard Test Method for Penetration of Bituminous Materials, ASTM D5M-19”, (United States of America: American Society for Testing and Materials), 2017

Una Norma Española (UNE), “Índice de Penetración de los Betunes Asfálticos, NLT-181/188-99”, (Spain: Asociación Española de Normalización), 1999

American Society for Testing and Materials (ASTM), “Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus) ASTM D39-95” (United States of America: American Society for Testing and Materials), 2000

American Association of State Highway and Transportation Officials (AASHTO), “Standard Method of Test for Specific Gravity of Semi-Solid Asphalt Materials AASHTO T228-09”, (United States of America: American Association of State Highway and Transportation Officials), 2009

American Association of State Highway and Transportation Officials (AASHTO), “Standard Method of Test for Viscosity Determination of Asphalt Binder Using Rotational Viscometer AASHTO T316-13”, (United States of America: American Association of State Highway and Transportation Officials), 2013

American Society for Testing and Materials (ASTM), “Standard Test Method for Flash Point of Cutback Asphalt with Tag Open-Cup Apparatus, ASTM D3143M-19”, (United States of America: American Society for Testing and Materials), 2000

American Society for Testing and Materials (ASTM), “Standard Test Method for Ductility of Asphalt Materials, ASTM D113-17”, (United States of America: American Society for Testing and Materials), 2017

American Society for Testing and Materials (ASTM), “Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine, ASTM C131-06”, (United States of America: American Society for Testing and Materials), 2006

American Society for Testing and Materials (ASTM), “Standard Test Method for Resistance of Coarse Aggregate to Degradation by Abrasion in the Micro-Deval Apparatus, ASTM D6928-17”, (United States of America: American Society for Testing and Materials), 2017

American Society for Testing and Materials (ASTM), “Standard Test Method for Determining the Percentage of Fractured Particles in Coarse Aggregate, ASTM D5821-01”, (United States of America: American Society for Testing and Materials), 2000

American Society for Testing and Materials (ASTM), “Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate, ASTM C127-07”, (United States of America: American Society for Testing and Materials), 2007

American Society for Testing and Materials (ASTM), “Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate, ASTM C128-07a”, (United States of America: American Society for Testing and Materials), 2007

INVIAS (Instituto Nacional de Vías). 2022. Especificaciones generales de construcción de carreteras. Bogotá, DC, Colombia: INVIAS

UNE (Asociación Española de Normalización). 2020. Elaboración de probetas con compactador de placa, UNE-EN 12697-33:2020

American Society for Testing and Materials (ASTM), “Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper, ASTM D5298-10”, (United States of America: American Society for Testing and Materials), 2010

J.C. García, “Efecto de los cambios de humedad en la resistencia de un suelo parcialmente saturado derivado de ceniza volcánica”, Master Thesis, Universidad Nacional de Colombia, 2004.

Sistema OJS - Metabiblioteca |