Análisis térmico de mieles de Trigona (Tetragonisca) angustula de Norte de Santander, Colombia

Análisis térmico de mieles de Trigona (Tetragonisca) angustula de Norte de Santander, Colombia

Contenido principal del artículo

Yaneth Cardona-Rodríguez
Diana Alexandra Torres-Sánchez
Wolfgang Hoffmann

Resumen


Antecedentes: Las mieles de abejas sin aguijón se utilizan principalmente con fines terapéuticos y medicinales; sin embargo, los estudios relacionados con estas mieles, son escasos y están enfocados en la determinación de algunas de sus características fisicoquímicas y microbianas. Objetivo: En este trabajo, se estudió el comportamiento térmico de mieles de Trigona (Tetragonisca) angustula, provenientes de tres lugares de Norte de Santander (Durania, Granja experimental Villa Marina y Los Patios), mediante calorimetría diferencial de barrido (DSC). Métodos: Se determinó el comportamiento térmico de las muestras de miel (~10 mg), utilizando un equipo SDT-Q600 de TA Instruments, que realiza simultáneamente Análisis Termogravimétrico y Calorimetría Diferencial de Barrido (TGA/DSC). Resultados: Se encontró que las muestras presentan 4 transiciones térmicas, independientemente del sitio de muestreo. Adicionalmente, se encontraron diferencias estadísticamente significativas en las entalpías de dichas transiciones. Conclusión: Las mieles producidas por la especie T. angustula presentan un comportamiento térmico característico, que permite diferenciarlas según su procedencia geográfica.

Palabras Clave: Análisis térmico, Calorimetría Diferencial de Barrido (DSC), Miel, Trigona (Tetragonisca) angustula.

 

Abstract


Background: Honey of stingless bees is used in traditional medicine; nevertheless, studies related to these honeys are scarce and are focused in physicochemical and microbiological properties. Objective: We studied thermal behavior of honeys produced by Trigona (Tetragonisca) angustula, collected from three different places (Durania, Villa Marina and Los Patios), using Differential Scanning Calorimetry (DSC). Methods: We determined thermal behavior of honey samples (~10 mg), using a SDT-Q600, TA Instruments, simultaneous differential scanning calorimetry/thermogravimetric analysis (DSC/TGA). Results: T. angustula honeys exhibited four thermal transitions regardless sampling place. In addition, we found significant differences in the enthalpies of these transitions. Conclusion: Honey produced by T. angustula exhibited a characteristic thermal behavior, that will allow differentiate its geographical origin.

Keywords: Thermal analysis, Differential Scanning Calorimetry (DSC), Honey, Trigona (Tetragonisca) angustula.

 

Resumo

 

Antecedentes: O mel de abelhas sem ferrão é usado principalmente com fins terapêuticos e medicinais; no entanto, os estudos relacionados com este tipo de mel, são escassos e estão focados na determinação de algumas de suas características físico-químicas e microbianas. Objetivo: Neste trabalho, se estudou o comportamento térmico do mel de Trigona (Tetragonisca) angustula, a partir de três lugares de Norte de Santander (Durania, Fazenda Experimental Villa Marina e Los Patios), através de calorimetria diferencial de varrimento (DSC). Metodologia: Determinou-se o comportamento térmico das amostras de mel (~10 mg), utilizando um equipo SDT-Q600 de TA Instruments, que realiza simultaneamente Análise Termogravimétrico e Calorimetria Diferencial de Varrimento (TGA/DSC). Resultados: Encontrou-se que as amostras apresentam quatro transições térmicas, independentemente do local de amostragem. Além disso, se encontraram diferenças estatisticamente significativas nas entalpias de tais transições. Conclusão: O mel produzido pela espécie T. angustula apresenta um comportamento térmico característico, que permite diferencia-a segundo sua procedência geográfica.

Palavras-chave: Análise térmico, Calorimetria Diferencial de Varrimento (DSC), Mel, Trigona (Tetragonisca) angustula.

 

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Yaneth Cardona-Rodríguez, Universidad de Pamplona

Maestría en Química.

Diana Alexandra Torres-Sánchez, Universidad de Pamplona

Doctorado en Ciencias-Química

Wolfgang Hoffmann, Universidad de Pamplona

Zootecnista.

Referencias (VER)

H. M. Habib, F. T. Al Meqbali, H. Kamal, U. D. Souka and W. H. Ibrahim, “Physicochemical and biochemicalproperties of honeys from arid regions,” Food Chemistry, vol. 153, pp. 35-43, June 2014.

G. Nates-Parra y J. M. Rosso-Londoño, “Diversidad de abejas sin aguijón (Hymenoptera:Meliponini) utilizadas en meliponicultura en Colombia,” Acta Biológica Colombiana, vol. 18, pp. 415-426, 2013.

G. Nates-Parra, “Abejas silvestres y polinización,” Manejo Integrado de Plagas y Agroecología, vol. 75, pp. 7-20, 2005.

C. D. Michener, “The importance of Bees,” in The Bees of the world, ed Baltimore: John Hopkins University Press, 2007, pp. 4-5.

M. Juan-Borrás, E. Domenech, M. Hellebrandova and I. Escriche, “Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys,” Food Research International, vol. 60, pp. 86-94, June 2014.

I. K. Karabagias, A. Badeka, S. Kontakos, S. Karabournioti and M. G. Kontominas, “Characterisation and classification of Greek pine honeys according to their geographical origin based on volatiles, physicochemical parameters and chemometrics,” Food Chemistry, vol. 146, pp. 548-557, March 2014.

A. Torres, W. Hoffmann and I. Lamprecht, “Thermal investigations of a nest of the stingless bee Trigona (Frieseomelitta) nigra pauper provancher in Colombia,” Journal of Thermal Analysis and Calorimetry, vol. 95, no. 3, pp. 737-741, March 2009.

A. Torres, A. Garedew, E. Schmolz and I. Lamprecht, “Calorimetric investigation of the antimicrobial action and insight into the chemical properties of “angelita” honey—a product of the stingless bee Tetragonisca angustula from Colombia,” Thermochimica Acta, vol. 415, no. 1-2, pp. 107-113, June 2004.

J. Laverde Rodríguez, L. M. Egea Hernández, D. M. Rodrígez Zárate y J. E. Peña Saenz, “Agenda prospectiva de investigación y desarrollo tecnológico para la cadena productiva de las abejas y la apicultura en colombia con énfasis en miel de abejas. ,” M. d. A. y. D. Rural., Ed., ed. Bogotá - Colombia: Ministerio de Agricultura y Desarrollo Rural., 2010, p. 224.

M. Cortopassi-Laurino, V. L. Imperatriz-Fonseca, D. W. Roubik, A. Dollin, T. Heard, I. Aguilar, et al., “Global meliponiculture: challenges and opportunities,” Apidologie, vol. 37, pp. 275-292, 2006.

G. Nates-Parra, “Las Abejas sin Aguijón (Hymenoptera: Apidae: Meliponini) de Colombia,” Biota Colombiana, vol. 2, pp. 233-248, 2001.

C. Fuenmayor, A. Díaz-Moreno, C. Zuluaga-Domínguez and M. Quicazán, “Honey of Colombian Stingless Bees: Nutritional Characteristics and Physicochemical Quality Indicators,” in Pot-Honey, P. Vit, S. R. M. Pedro y D. Roubik, Eds., ed: Springer New York, 2013, pp. 383-394.

L. Bijlsma, L. L. M. De Bruijn, E. P. Martens and M. J. Sommeijer, “Water content of stingless bee honeys (Apidae, Meliponini): interspecific variation and comparison with honey of Apis mellifera,” Apidologie, vol. 37, pp. 480- 486, 2006.

C. Cordella, J. F. Antinelli, C. Aurieres, J. P. Faucon, D. Cabrol-Bass and N. Sbirrazzuoli, “Use of differential scanning calorimetry (DSC) as a new technique for detection of adulteration in honeys. 1. Study of adulteration effect on honey thermal behavior,” Journal of Agricultural and Food Chemistry, vol. 50, no. 1, pp. 203-208, January 2002.

C. Cordella, J. P. Faucon, D. Cabrol- Bass, and N. Sbirrazzuoli, “Application of DSC as a tool for honey floral species characterization and adulteration detection,” Journal of Thermal Analysis and Calorimetry, vol. 71, no. 1, pp. 279- 290, January 2003.

O. Dahimi, A. A. Rahim, S. M. Abdulkarim, M. S. Hassan, S. B. T. Z. Hashari, A. Siti Mashitoh, et al., “Multivariate statistical analysis treatment of DSC thermal properties for animal fat adulteration,” Food Chemistry, vol. 158, pp. 132-138, September 2014.

L. B. de Almeida-Muradian, “Tetragonisca angustula Pot-Honey Compared to Apis mellifera Honey from Brazil,” in Pot-Honey, P. Vit, S. R. M. Pedro, and D. Roubik, Eds., ed: Springer New York, 2013, pp. 375-382.

M. J. Dardón, C. Maldonado-Aguilera, and E. Enríquez, “The Pot-Honey of Guatemalan Bees,” in Pot Honey, P. Vit, S. R. M. Pedro, and D. Roubik, Eds., ed: Springer New York, 2013, pp. 395-408.

P. Vit, L. Oddo, Persano, M. Marano, Luisa and E. Salas de Mejias, “Venezuelan stingless bee honeys characterized by multivariate analysis of physicochemical properties,” Apidologie, vol. 29, pp. 377-389, 1998.

M. J. Dardón y E. Enríquez, “Caracterización fisicoquímica y antimicrobiana de la miel de nueve especies de abejas sin aguijón (Meliponini) de Guatemala,” Interciencia, vol. 33, pp. 916-922, 2008.

L. Piasenzotto, L. Gracco and L. Conte, “Solid phase microextraction (SPME) applied to honey quality control,” Journal of the Science of Food and Agriculture, vol. 83, pp. 1037-1044, 2003.

T. Wolski , K. Tambor, H. Rybak- Chmielewska and B. Kêdzia, “Identification of honey volatile components by Solid Phase Microextraction (SPME) and Gas Chromatography /Mass Spectrometry (GC/MS),” Journal of Apicultural Science, vol. 50, pp. 115-126, 2006.

R. A. Perez, C. Sanchez-Brunete, R. M. Calvo, and J. L. Tadeo, “Analysis of volatiles from Spanish honeys by Solid-Phase Microextraction and Gas Chromatography / Mass Spectrometry,” Journal of Agricultural and Food Chemistry vol. 50, pp. 2633-7, April 2002.

M. P. Gianelli Barra, M. C. Ponce-Díaz, and C. Venegas-Gallegos, “Volatile Compounds in Honey Produced in the Central Valley of Ñuble Province, Chile,” Chilean Journal of Agricultural Research, vol. 70, pp. 75-84, 2010.

F. Pasini, S. Gardini, G. L. Marcazzan, and M. F. Caboni, “Buckwheat honeys: screening of composition and properties,” Food Chemistry, vol. 141, pp. 2802-11, Dec 1 2013.

F. Pasini, S. Gardini, G. L. Marcazzan, and M. F. Caboni, “Buckwheat honeys: screening of composition and properties,” Food Chemistry, vol. 141, pp. 2802-2811, December 2013.

M. Mizuno and M. J. Pikal, “Is the pre-Tg DSC endotherm observed with solid state proteins associated with the protein internal dynamics? Investigation of bovine serum albumin by solid state hydrogen/deuterium exchange,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 85, pp. 170-176, October 2013.

J. C. Martinez, A. R. Viguera, L. Serrano, V. V. Filimonov, and P. L. Mateo, “The DSC data analysis for small, singledomain proteins. Application to the SH3 domain,” Reactive and Functional Polymers, vol. 36, pp. 221-225, May 1998.

A. E. Lyubarev and B. I. Kurganov, “Analysis of DSC Data Relating to Proteins Undergoing Irreversible Thermal Denaturation,” Journal of Thermal Analysis and Calorimetry, vol. 62, pp. 51-62, October 2000.

G. Bruylants, J. Wouters, y C. Michaux, “Differential scanning calorimetry in life science: thermodynamics, stability, molecular recognition and application in drug design,” Curr Med Chem, vol. 12, pp. 2011-2020, 2005.

C. M. Johnson, “Differential scanning calorimetry as a tool for protein folding and stability,” Arch Biochem Biophys, vol. 531, pp. 100-109, March 2013.

J. Wen, K. Arthur, L. Chemmalil, S. Muzammil, J. Gabrielson and Y. Jiang, “Applications of differential scanning calorimetry for thermal stability analysis of proteins: qualification of DSC,” J Pharm Sci, vol. 101, pp. 955- 964, March 2012.

J. W. Lee, L. C. Thomas, and S. J. Schmidt, “Investigation of the Heating Rate Dependency Associated with the Loss of Crystalline Structure in Sucrose, Glucose, and Fructose Using a Thermal Analysis Approach (Part I),” Journal of Agricultural and Food Chemistry, vol. 59, pp. 684-701, Jan 2011.

Artículos más leídos del mismo autor/a