Cartas de control para monitorear variables multinomiales

Cartas de control para monitorear variables multinomiales

Contenido principal del artículo

Luz Marcela Restrepo-Tamayo
Juan Carlos Correa-Morales

Resumen


Antecedentes: La carta de control como herramienta de monitoreo de la calidad de un producto, permite estudiar la estabilidad de los procesos en el tiempo, contrastando dos hipótesis, una que expresa que el proceso se encuentra en estado estable y otra que lo niega. Su utilización ha sido masiva para variables continuas más no para variables categóricas, motivo por el cual es imperante el diseño de tales herramientas para ese tipo de variables. Objetivo: Proponer dos (2) cartas de control para procesos con variables multinomiales basadas en el valor-p resultado de la prueba de homogeneidad de proporciones, empleando la transformación chicuadrado para variables uniformes y la aproximación Wilson - Hilferty para variables chi cuadrado. Métodos: El desempeño de las cartas propuestas es estimado vía simulación considerando un proceso en Fase II y considerando incrementos en la primera categoría de 2%, 4% y 6% en la etapa de control. Resultados: La carta de control multinomial usando aproximación Wilson- Hilferty para variables chi cuadrado, provenientes de la transformación del valor-p, presenta un desempeño deficiente comparado con las cartas de control usando valor-p y usando transformación chi cuadrado al valor-p, pues tienen menor habilidad para detectar cambios pequeños. Conclusión: Proponemos dos cartas de control para monitorear variables multinomiales y, una vez estudiadas vía simulación, con base en la Longitud de corrida promedio (ARL) y la probabilidad de rechazar la hipótesis nula de igualdad de proporciones, se recomienda el uso de la carta de control usando valor-p,o equivalentemente, de la carta de control usando transformación chi cuadrado del valor-p.

Palabras clave: carta de control, distribución multinomial, prueba de homogeneidad, valor-p.

 

Abstract

 

Background: The control as a tool for monitoring the quality of a product, allows to study the stability of processes over time, contrasting two hypothesis, which states that the process is in stable condition and the other denies it. Its use has been massive for continuous variables but not for categorical variables, why it is imperative to design such tools for such variables. Objective: To propose two (2) control charts for variables multinomial processes based on the p-value test result for homogeneity of proportions using the chi square test for uniform processing variables and approximation Wilson - Hilferty for variables chi square. Methods: The performance of proposed charts via simulation is estimated considering a Phase II process and considering the first category increments of 2%, 4% and 6% in the control stage. Results: The multinomial control chart using Wilson-Hilferty approximation for variables chi square, from the transformation of value-p, has poor performance compared to the control charts using p-value processing and using chi-square p-value, as they have less ability to detect small changes. Conclusion: We propose two control charts to monitor multinomial variables and once studied via simulation, based on the average run length (ARL) and the probability of rejecting the null hypothesis of equal proportions, we recommend the control chart using value-p, or equivalently, the control chart processing using chi square p-value.

Keywords: control chart, multinomial distribución, homogeneity test, p-value.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Luz Marcela Restrepo-Tamayo, Universidad Nacional de Colombia, Medellín.

Magister en Ciencias - Estadística.

Juan Carlos Correa-Morales, Universidad Nacional de Colombia, Medellín.

Doctor en Estadística.

Referencias (VER)

J. Juran, F. Gryna, “Juran’s Quality Control Handbook.” 4 ed. New York: McGraw Hill, 1988.

D. Montgomery, 2Control Estadístico de la Calidad”. Mexico D.F.: Limusa Wiley, p. 789, 2005.

N. Johnson, S. Kotz, “Discrete Multivariate Distributions”. New York: Wiley - Interscience. p. 299. 1996.

M. Marcucci, “Monitoring multinomial processes”, Journal of Quality Technology, vol.17, pp. 86-91, 1985.

M. Laviolette, “Bayesian monitoring of multinomial processes”, The Journal of the Industrial Mathematics Society, vol. 45, no. 1, pp. 41-49, 1995.

J. J. Shiau, C. R. Chen, C. Feltz, “An Empirical Bayes Process Monitoring Technique for Polytomous Data”, Quality and Reliability Engineering International, vol. 21, no. 1, pp. 13-28, 2005.

W. Woodall, K. L. Tsui, Y G. R. Tucker, “A Review of Statistical and Fuzzy Quality Control Charts Based on Categorical Data”. Frontiers in Statistical Quality Control 5, p. 291, 1997.

C. Spanos, y R. Chen, “Using Qualitative Observations for Process Tuning and Control”, IEEE Transactions on Semiconductor Manufacturing, vol. 10, no. 2, pp. 307-316, 1997.

R. Duran, Tesis de Doctorado. Monitoring and Interpreting Multistage and Multicategory Processes Rutgers University, 2009.

T. Raz, J. H. Wang, “Probabilistic and membership approaches in the construction of control charts for linguistic data”, Production Planning and Control, vol. 1, no. 3, pp. 147-157, 1990.

H. Taleb, M. Limam, “On fuzzy and probabilistic control charts”, International Journal of Production Research, vol. 40, no. 12, pp. 2849 –2863, 2002.

H. Taleb, M. Limam, K. Hirota, “Multivariate fuzzy multinomial control charts”, Quality Technology & Quantitative Management, vol. 3, no. 4, pp. 437 - 453, 2006.

H. Taleb, “Control Charts Applications for Multivariate Attribute Processes”. Computers & Industrial Engineering, vol. 56, no. 1, pp. 399 - 410. 2009.

Y. Li, F. Tsung, “Multiple Attribute Control Charts with False Discovery Rate Control”, Quality and Reliability Engineering International, vol. 28, no. 8, pp. 857-871, 2012.

D. Montgomery, G. Runger, “Applied Statistics and Probability for Engineers”,Nueva York: John Wiley & Sons, p. 706, 2003.

K. Fairbanks, R. Madsen, “P Values for Test Using a Repeated Significance Test Design”, Biometrika, vol. 69, no. 1, pp. 69-74, 1982.

R. Hogg, A. Craig, “Introduction to Mathematical Statistics”, Bogotá: Prentice Hall, X, p. 564, 1995.

E. Wilson, M. Hilferty, “The Distribution of Chi-square”, Proceedings of the National Academy of Sciences of the United States of America, vol. 17, no. 12, pp. 684 - 688, 1931.

J. Bromaghin, “Sample Size Determination for Interval Estimation of Multinomial Probabilities”, The American Statistician, vol. 47, no. 3, pp. 203-206, 1993.