Dispositivo de alineación de muestras para el difractómetro de rayos X con control de posición e interfaz de manipulación

Dispositivo de alineación de muestras para el difractómetro de rayos X con control de posición e interfaz de manipulación

Contenido principal del artículo

Daniel Santiago Jiménez-Novoa
Johann Sebastián González-Bustamante
William Aperador-Chaparro
Resumen

 

En este artículo se detalla el diseño y fabricación de un prototipo mecánico que actúa como soporte de distintos tamaños de muestras para el análisis de difracción de rayos X, que controla la posición de la probeta, logrando una orientación precisa con respecto al haz de rayos X, esto beneficia al sector industrial en el desarrollo de nuevos proyectos con materiales al mejorar el desempeño de los mismos. El dispositivo requiere de la integración de distintos elementos mecánicos, electrónicos junto con conocimientos en el área programación para su correcto funcionamiento con el alto grado de precisión necesario para garantizar la posición de la muestra, a partir del diseño y la buena elección de los materiales en la fabricación. Se logró garantizar la precisión de la posición de la muestra a evaluar, por lo tanto, las partes mecánicas a utilizar en el prototipo deben ser de la mayor precisión que podamos obtener en este tipo de elementos según las medidas de la estructura.


Palabras clave: difracción de rayos X, diseño, precisión, electrónica.

 

Abstract


This article describes the design and manufacture of a mechanical prototype which acts to support different sizes of samples for the analysis of X-ray diffraction, which controls the position of the specimen, is detailed making accurate with respect to X-ray beam orientation this benefits the industry in the development of new projects with materials to improve the performance thereof. The device requires the integration of various mechanical, electronic elements with expertise in the programming area for proper operation with high degree of accuracy required to secure the position of the sample, from design and good choice of materials in the making. It managed to ensure the accuracy of the sample position to assess; therefore the mechanical parts used in the prototype should be as accurately as we can get in this kind of items as measured by the structure.

Keywords: X-Ray Diffraction, design, electronic, linear translation.

 

Resumo


Neste artigo detalha-se o design e fabricação de um protótipo mecânico que atua como suporte de diferentes tamanhos de amostras para a análise de difração de raios X, que controla a posição da proveta, logrando uma orientação precisa com respeito ao feixe de raios X, isto beneficia ao sector industrial no desenvolvimento de novos projetos com materiais ao melhorar o desempenho dos mesmos. O dispositivo requer da integração de diferentes elementos mecânicos, electrónicos junto com conhecimentos na área de programação para seu correto funcionamento com o alto grau de precisão necessário para garantir a posição da amostra, a partir do design e a boa eleição dos materiais na fabricação. Logrou-se garantir a precisão da posição da amostra a avaliar, portanto, as partes mecânicas a utilizar no protótipo devem ser da maior precisão que podamos obter neste tipo de elementos segundo as medidas da estrutura.


Palavras-chave: difração de raios X, design, precisão, electrónica.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Daniel Santiago Jiménez-Novoa, Universidad Militar Nueva Granada, Bogotá

Ingeniero Mecatrónico, Facultad de Ingeniería.

Johann Sebastián González-Bustamante, Universidad Militar Nueva Granada

Ingeniero Mecatrónico, Facultad de Ingeniería.

William Aperador-Chaparro, Universidad Militar Nueva Granada

Doctor en Ingeniería. Facultad de Ingeniería.
Referencias

L.D. Cussen and K. Lieutenant, “Computer simulation tests of optimized neutron powder diffractometer configurations”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 822, pp. 97-111, 21 June 2016.

L.D. Cussen, “Optimizing constant wavelength neutron powder diffractometers”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 821, pp. 122-135, 11 June 2016.

C. Randau, H.G. Brokmeier, W.M. Gan M. Hofmann, et. al, “Improved sample manipulation at the STRESSSPEC neutron diffractometer using an industrial 6-axis robot for texture and strain analyses”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 794, pp. 67-75, 11 September 2015.

J. Décobert, R. Guillamet, C. Mocuta, G. Carbone, and H. Guerault, “Structural characterization of selectively grown multilayers with new high angular resolution and sub-millimeter spotsize x-ray diffractometer”, Journal of Crystal Growth, vol. 370, pp. 154-156, 1 May 2013.

H. Hong and T.C. Chiang, “A six-circle diffractometer system for synchrotron X-ray studies of surfaces and thin film growth by molecular beam epitaxy”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 572, no. 2, pp. 942-947, 11 March 2007.

C. Niu, X. Liu, J Meng, L. Xu, M. Yan, et al, “Three dimensional V2O5/ NaV6O15 hierarchical heterostructures: Controlled synthesis and synergistic effect investigated by in situ X-ray diffraction”, Nano Energy, vol. 27, pp. 147-156, September 2016.

S. Argast, and T Corey, “Using the World Wide Web for interactive control of an X-ray diffractometer”, Computers & Geosciences, vol. 24, no. 7, pp. 633-640, August 1998.

T. Nakano, K. Kaibara, Y. Tabata, N. Nagata, et al, “Unique alignment and texture of biological apatite crystallites in typical calcified tissues analyzed by microbeam x-ray diffractometer system”, Bone, vol. 31, no. 4, pp. 479-487, October 2002.

T. Kawasaki, T. Nakamura, K. Toh, T. Hosoya, et al, “Detector system of the SENJU single-crystal time-of-flight neutron diffractometer at J-PARC/MLF”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 735, pp. 444-451, 21 January 2014.

J. Altenkirch, A. Steuwer, P.J. Withers, T. Buslaps, et al “Robotic sample manipulation for stress and texture determination on neutron and synchrotron X-ray diffractometers”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 584, no. 2–3, pp. 428-435, 11 January 2008.

Y.A. Gaponov, E.A. Dementyev, D.I. Kochubei, and B.P. Tolochko, “Portable high precision small/wide angle X-ray scattering diffractometer”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 467–468, pp. 1092-1096, 21 July 2001.

L.L. Fan, S. Chen, Q.H. Liu, G.M. Liao, et al, “The epitaxial growth and interfacial strain study of VO2/MgF2 (001) films by synchrotron based grazing incidence X-ray diffraction”, Journal of Alloys and Compounds, vol. 678, pp. 312-316, 5 September 2016.

W. Kirchmeyer, O. Grassmann, N. Wyttenbach, J. Alsenz, et al, “Miniaturized X-ray powder diffraction assay (MixRay) for quantitative kinetic analysis of solvent-mediated phase transformations in pharmaceutics”, Journal of Pharmaceutical and Biomedical Analysis, vol. 131, pp. 195-201, 30 November 2016.

N. Schäfer, A.J. Wilkinson, T. Schmid, A. Winkelmann, et al, Tobias U. Schülli, Thorsten Rissom, Julien Marquardt, Susan Schorr, Daniel AbouRas, “Microstrain distribution mapping on CuInSe2 thin films by means of electron backscatter diffraction, X-ray diffraction, and Raman microspectroscopy”, Ultramicroscopy, vol. 169, pp. 89-97, October 2016.

M.A.V. Alvarez, J.R. Santisteban, P. Vizcaíno, G. Ribárik and T. Ungar, “Quantification of dislocations densities in zirconium hydride by X-ray line profile analysis”, Acta Materialia, vol. 117, pp. 1-12, 15 September 2016.

D.V. Rao, G.E. Gigante, Y.M. Kumar, R. Cesareo, et al, “Synchrotronbased crystal structure, associated morphology of snail and bivalve shells by X-ray diffraction”, Radiation Physics and Chemistry, vol. 127, pp. 155-164, October 2016.

Y. Hattori and M. Otsuka, “Analysis of the stabilization process of indomethacin crystals via π–π and CH–π interactions measured by Raman spectroscopy and X-ray diffraction”, Chemical Physics Letters, vol. 661, pp. 114-118, 16 September 2016.

S.R. Kada, P.A. Lynch, J.A. Kimpton and M.R. Barnett, “In-situ X ray diffraction studies of slip and twinning in the presence of precipitates in AZ91 alloy”, Acta Materialia, vol. 119, pp. 145-156, 15 October 2016.

P. Muthuraja, M. Sethuram, T. Shanmugavadivu and M. Dhandapani, “Single crystal X-ray diffraction and Hirshfeld surface analyses of supramolecular assemblies in certain hydrogen bonded heterocyclic organic crystals”, Journal of Molecular Structure, vol. 1122, 146-156, 15 October 2016.

A. Fasihizad, A. Akbari, M. Ahmadi, M. Dusek et al, “Copper(II) and molybdenum(VI) complexes of a tridentate ONN donor isothiosemicarbazone: Synthesis, characterization, X-ray, TGA and DFT”, Polyhedron, vol. 115, pp. 297-305, 5 September 2016.

S. Rajković, M.D. Živković, B. Warżajtis, U. Rychlewska, et al, “Synthesis, spectroscopic and X-ray characterization of various pyrazinebridged platinum(II) complexes: 1HNMR comparative study of their catalytic abilities in the hydrolysis of methionine- and histidine containing dipeptides”, Polyhedron, vol. 117, pp. 367-376, 15 October 2016.

Sistema OJS - Metabiblioteca |