El pensamiento Abstracto a partir de la interdisciplinariedad de las Matemáticas

El pensamiento Abstracto a partir de la interdisciplinariedad de las Matemáticas

Contenido principal del artículo

Jessica Tatiana Rojas Gómez

Resumen

Parte del inicio del estudio de las matemáticas o mejor aún, del reconocimiento de las matemáticas como ciencia base del desarrollo del pensamiento del hombre y de la capacidad de abstracción partiendo de una situación “real” a una situación general, es llamado con el nombre de teorema - “regla” - “ley”. El cual es enunciado como la  “formalización” de una tesis que es valida a partir de determinadas hipótesis o condiciones. Este tipo de elemento matematico es el nucleo del proceso de quien estudia las matemáticas, sea para el matematico teorico que necesita seguir detalladamente el proceso de construcción del teorema para elaborar detalladamente la demostración del mismo, sea para el matematico aplicado que debe utilizar este resultado en las diferentes disciplinas que utilizan las matemáticas como demostración de experimentos o de observaciones cotidianas. El grande resultado “Teorema” deriva de la sucesión de determinados procesos de abstracción donde una situación practica recibe un resultado y así mismo este resultado puede ser aplicado a otras situaciones practicas que respetan los mismos patrones.

Palabras Clave: Pensamiento abstracto,  matemática aplicada, teorema.

 

Abstract

When the mathematic science begin as the science that show the human abstract thinking consider the process in which the men takes a real situation and he transforms it in a mathematic’s law, the human thinking’s development catch the need to convert a problem into a process thinking that can gives the solutions and the same time founds an other situations that have its solutions. The Mathematic calls it “Theorem” from a conditions the tesis is verified but this is not only the tesis it is the verify of the similar situations that indicated the same conditions and solutions.

The abstract thinking derives the fundamental steps that can use a singularity problem and through the process  used to found its solution, it’s possible found the law that describe the performance’s set necessary to develop it.

Keywords: Abstract thinking, applied mathematics, theorem.

 

Resumo

Quando a ciência matemática começa como a ciência que mostra o pensamento abstrato humano considerar o processo em que os homens tomam uma situação real e o transforma na lei de uma matemática, o desenvolvimento do pensamento humano captura a necessidade de converter um problema em um processo pensando que lata dá as soluções e ao mesmo tempo funda outras situações que tenham suas soluções. A Matemática chama-lhe "Teorema" de uma condição a tese é verificada, mas isto não é só a tese é a verificação das situações similares que indicaram as mesmas condições e soluções.

O pensamento abstrato deriva os passos fundamentais que podem usar um problema de singularidade e, através do processo usado para encontrar sua solução, é possível encontrar a lei que descreve o conjunto de desempenho necessário para desenvolvê-lo.

Palavras-chave: Pensamento abstrato, matemática aplicada, teorema.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

Mozaz Garde, J. (1985). El pensamiento abstracto considerado como función mental superior. Rev. Log., Fon., Audiol., vol VII, No.2 (66-67).

Longo, P. Concreto/astratto: una dinamica necessaria nell’insegnamento primario della matematica. Retreived from http://old.unipr.it/arpa/dipmat/labnum/guzzoni/AVVENIMENTI/PDFMONTICELLI/Longo.pdf

Munkres, J.R. (2002). Topología 2.a edición. Pearson Educación, S.A., Madrid, 2002.

Munkres, J.R (1993). Elements of algebraic Topology, Perseus Book Mass.

Rudin, W (1972). Real and Complex Analysis, 3rd edition. McGraw-Hill Book Company, New York, 1987.

Gellner E (2002). Lenguaje y soledad: Wittenstein, Malinowsky y el dilema del los Hasburgo. Síntesis; Edición 1 (2002)

Serrano, M.S. (1993) Didáctica del las Matemáticas. Dialnet. Revista de la Facultad de Educación de Albacete, No.8, 1993, págs. 173-194.

Lepschy, A. (2005) Indagine sull’etimologia e sulla datazione di un termine matematico. Lingua e stile, Vol. 40, No. 1, 2005, págs. 91-106.

Caporaso, L. (2016) Il concetto matematica di cui non potremmo fare a meno: Spazio Topologico. MaddMaths (Matematica Divulgazione Italiana). Retrieved from http://old.unipr.it/arpa/dipmat/labnum/guzzoni/AVVENIMENTI/PDFMONTICELLI/Longo.pdf.

Repubblica (R.it). Cos’è la topologia, premiata con il nobel per la Fisica 2016. Retrieved from http://www.repubblica.it/scienze/2016/10/04/news/nobel_per_la_fisica_-_la_scheda_cos_e_la_topologia-149092410/.

Manaresi, M. (2005). Matematica e cultura in Europa. Springer Science & Business Media, 2005, 409 pages.

Manetti, M. (2014). Topologia. Springer, 2.da Edizione.

Lebesgue, H. (1904). Leçons sur l'integration et la recherche des fonctions primitives. Collection de monographies sur la theorie des fonctions, Paris, Gauthier-Villars, 1904.

Aleksandrov, P.S. (1972). Poinceré and Topology. The London Mathematical Society

Russian Mathematical Surveys, Volume 27, Number 1