Preliminary Identification of Skin Lesions using Efficient Computational Learning Techniques

Identificación preliminar de lesiones cutáneas mediante técnicas de aprendizaje computacional eficientes

Main Article Content

Carlos Vicente Niño-Rondón
Diego Andrés Castellano-Carvajal
Byron Medina-Delgado
Sergio Alexander Castro-Casadiego
Dinael Guevara-Ibarra
Abstract

Machine learning (ML) is one of the fields of artificial intelligence that offers algorithms to
predict from samples the effective detection of skin lesions caused by skin cancer. This paper presents the
preliminary identification of skin lesions using optimized algorithms for texture feature extraction by
GLCM and feature-based learning (LightGBM, SVM and HAAR Cascade) as an initial stage for a
diagnostic tool. The HAM10000 skin lesion image set, Python programming language and open sourcebased libraries are used to process the images, extract the features and train the learning models, determine
the performance and hit rate of the models. Based on the results obtained, the LightGBM classifier required
the shortest learning time, reduced CPU usage and 90 % accuracy rate

Keywords

Downloads

Download data is not yet available.

Article Details

References

E. R. Parker, “The influence of climate change on skin cancer incidence – A review

of the evidence,” Int. J. Women’s Dermatology, vol. 7, no. 1, pp. 17–27, Jan. 2021,

doi: 10.1016/J.IJWD.2020.07.003. DOI: https://doi.org/10.1016/j.ijwd.2020.07.003

C. Magalhaes, J. M. R. S. Tavares, J. Mendes, and R. Vardasca, “Comparison of

machine learning strategies for infrared thermography of skin cancer,” Biomed.

Signal Process. Control, vol. 69, pp. 1–10, Aug. 2021, doi: DOI: https://doi.org/10.1109/TSP.2021.3136798

1016/j.bspc.2021.102872.

T. G. Chandra, A. M. T. Nasution, and I. C. Setiadi, “Melanoma and nevus

classification based on asymmetry, border, color, and GLCM texture parameters

using deep learning algorithm,” in AIP Conference Proceedings, Dec. 2019, vol.

, no. 1, pp. 1–6, doi: 10.1063/1.5139389. DOI: https://doi.org/10.1063/1.5139389

S. A. A. Ahmed, B. Yanikoglu, O. Goksu, and E. Aptoula, “Skin Lesion

Classification with Deep CNN Ensembles,” 2020 28th Signal Process. Commun.

Appl. Conf. SIU 2020 - Proc., Oct. 2020, doi: 10.1109/SIU49456.2020.9302125. DOI: https://doi.org/10.1109/SIU49456.2020.9302125

E. Almansour and M. Arfan Jaffar, “Classification of Dermoscopic Skin Cancer

Images Using Color and Hybrid Texture Features,” IJCSNS Int. J. Comput. Sci.

Netw. Secur., vol. 16, no. 4, 2016.

S. Afifi, H. Gholamhosseini, and R. Sinha, “SVM classifier on chip for melanoma

detection,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 270–274,

Sep. 2017, doi: 10.1109/EMBC.2017.8036814. DOI: https://doi.org/10.1109/EMBC.2017.8036814

X. Li, J. Wu, H. Jiang, E. Z. Chen, X. Dong, and R. Rong, “Skin Lesion

Classification Via Combining Deep Learning Features and Clinical Criteria

Representations,” bioRxiv, pp. 1–7, Aug. 2018, doi: 10.1101/382010. DOI: https://doi.org/10.1101/382010

K. Padmavathi and K. Thangadurai, “Implementation of RGB and Grayscale

Images in Plant Leaves Disease Detection – Comparative Study,” Indian J. Sci.

Technol., vol. 9, no. 6, pp. 1–6, Feb. 2016, doi: 10.17485/IJST/2016/V9I6/77739. DOI: https://doi.org/10.17485/ijst/2016/v9i6/77739

M. Kumar, M. Alshehri, R. AlGhamdi, P. Sharma, and V. Deep, “A DE-ANN

Inspired Skin Cancer Detection Approach Using Fuzzy C-Means Clustering,”

Mob. Networks Appl. 2020 254, vol. 25, no. 4, pp. 1319–1329, Jun. 2020, doi: DOI: https://doi.org/10.1007/s11036-020-01550-2

1007/S11036-020-01550-2.

A. M. Gajbar and A. . Deshpande, “GLCM and Multiclass Support Vector

Machine Based Automatic Detection and Analysis of Types of Cancer and Skin

Allergy,” Int. J. Adv. Res. Electron. Commun. Eng., vol. 4, no. 5, pp. 1477–1488,

J. Díaz Ríos, J. J. Payá Martínez, and M. E. Del Baño Aldedo, “El análisis textural

mediante las matrices de co-ocurrencia (GLCM) sobre la imagen ecográfica del

tendón rotuliano es de utilidad para la detección de cambios histológicos tras un

entrenamiento con plataforma de vibración,” Cult. Cienc. y Deport., vol. 4, no. 11,

pp. 91–102, 2009, Accessed: Jan. 20, 2022. [Online]. Available:

https://dialnet.unirioja.es/servlet/articulo?codigo=3097046&info=resumen&idio

ma=ENG.

J. Zhang, D. Mucs, U. Norinder, and F. Svensson, “LightGBM: An Effective and

Scalable Algorithm for Prediction of Chemical Toxicity-Application to the Tox21

and Mutagenicity Data Sets,” J. Chem. Inf. Model., pp. 1–9, 2019, doi:

1021/ACS.JCIM.9B00633/SUPPL_FILE/CI9B00633_SI_001.PDF.

C. Chen, Q. Zhang, Q. Ma, and B. Yu, “LightGBM-PPI: Predicting protein-protein

interactions through LightGBM with multi-information fusion,” Chemom. Intell.

Lab. Syst., vol. 191, pp. 54–64, Aug. 2019, doi:

1016/J.CHEMOLAB.2019.06.003. DOI: https://doi.org/10.1088/1475-7516/2019/06/003

M. Lingaraj, A. Senthilkumar, and J. Ramkumar, “Prediction of Melanoma Skin

Cancer Using Veritable Support Vector Machine,” Ann. Rom. Soc. Cell Biol., vol.

, pp. 2623 – 2636, Apr. 2021, Accessed: Dec. 14, 2021. [Online]. Available:

https://www.annalsofrscb.ro/index.php/journal/article/view/2800.

J. Cervantes, F. Garcia-Lamont, L. Rodríguez-Mazahua, and A. Lopez, “A

comprehensive survey on support vector machine classification: Applications,

challenges and trends,” Neurocomputing, vol. 408, pp. 189–215, Sep. 2020, doi: DOI: https://doi.org/10.1016/j.neucom.2019.10.118

1016/J.NEUCOM.2019.10.118.

P. Srinivasan and V. Srinivasna, “A Comprehensive Diagnostic Tool for Skin

Cancer Using a Multifaceted Computer Vision Approach,” 7th Int. Conf. Soft

Comput. Mach. Intell. ISCMI 2020, pp. 213–217, Nov. 2020, doi:

1109/ISCMI51676.2020.9311557.

P. Tschandl, C. Rosendahl, and H. Kittler, “The HAM10000 dataset, a large

collection of multi-source dermatoscopic images of common pigmented skin

lesions,” Sci. Data 2018 51, vol. 5, no. 1, pp. 1–9, Aug. 2018, doi:

1038/sdata.2018.161.

Most read articles by the same author(s)

OJS System - Metabiblioteca |