Construcción de la integral por recorrido para la teoría de Dirac a través de las transformaciones de Fourier de las funciones de Green

Construcción de la integral por recorrido para la teoría de Dirac a través de las transformaciones de Fourier de las funciones de Green

Main Article Content

José Libardo Santiago-Angarita
Abstract

A path integral structure for relativistic electron is proposed. The Einstein-Smolukhovski equation and the Fourier transformations for the Green functions are taken into account to this end. An analysis of this path integral for three, four an N points at electron trajectory is made.

Keywords

Downloads

Download data is not yet available.

Article Details

Author Biography (SEE)

José Libardo Santiago-Angarita, Universidad de Pamplona

Licenciado en Matemáticas y Física. Magister en Física. Universidad de Pamplona

References

Bogoliubov N. and Shirkov D. Introduc- tion to Theory of Quanted Fields (Moscow: Nauka Press). 1976.

Feynman, R. P., and Hibbs, A. R., Quan- tum Mechanics and Path Integrals, New York: McGraw-Hill, 1965.

Santos Bravo, Yuste. Métodos de la Fí- sica Matemática. Universidad Extremadura. 2003.

B, Thaller. The Dirac Equation (Springer- Verlag, 1992).

Kraev M. Mecánica Cuántica. Univer- sidad Industrial de Santander. Bucaramanga. 1989.

Sokolov A. A., Ternov I.M., Zhukovski V. y Borisov A. V. Electrodinámica Cuántica. ed. Mir. Moscú.1989

H.Goldstein. Mecanica Clasica. (Edito- rial Ariel, Barcelona.).

Jhon P. Costella, Bruce Mckellar. The Foldy-Wouthyusen Transformation. (School of physics, The University of Melbourne, Australy, 1995.)

Bateman H. Tables of Integral Trans- forms vol 2 (McGraw-Hill Book Company, Inc). 1953.

Becerra A. R. Análisis de la solución fundamental de la ecuación de Dirac como una distribución. Phd. Tesis. 2003.

G.B. Arfken. H.J. Weber. Mathematical Methods for Physicist. (Harcourt Academic Press). 5 ed. 2002.

Beilinson A. A. Integración funcional movimiento Browniano. Ed. Universidad de la Amistad de los Pueblos Moscú. Moscú. 1979.

Gelfand I. M. and Shilov G. E. General- ized Functions (vol 1 y vol 4 Moscow: Fis- matguis Press). 1958.

Beilinson A. A. and Becerra A. R Vest- nik RUDN 10(1) 69. 2002.

Huertas Díaz, O., Esmeral Ariza, S., & Sánchez Fontalvo, I. (2014). La Educación en Comunidades Indígenas; Frente a su proyecto de vida en un mundo globalizado. Revista Logos Ciencia & Tecnología, 5(2), 232-243. doi:http://dx.doi.org/10.22335/rlct.v5i2.112

Takashi Ichinose, Imaginary-time path integral for a relativistic spinless particle in an electromagnetic field, Communications in Mathematical Physics 239-257, 1986

B. Gaveau and L. S. Schulman Inter- preting the Grassmann variables, Il Nuovo Cimento D, 31-51, 1988

F. Bordi, R. Casalbuoni. Dirac propa- gator from path integral quantization of the pseudoclassical spinning particle, ScienceDi- rect, 308-312, 1980.

Most read articles by the same author(s)

OJS System - Metabiblioteca |