A study of DCT specimen in the verification of the influence of the geometric variation in the stress intensity factor

Estudio de una muestra de DCT en la verificación de la influencia de la variación geométrica en el factor de intensidad de tensión

Main Article Content

Iago Freitas de Almeida
Gelson de Sousa Alves
Nelson Afanador-García
Abstract

The objective of this work is to verify the influence of the stress intensity factor in the linear elastic fracture mechanics model. The model consists in a Disk-shaped Compact Tension specimen (DCT) of concrete material. The methodology considers a comparative study of an analytical approach from the literature and numerical simulations. These numerical simulations are performed in ANSYS Workbench program by the use of the Finite Element Method (FEM). The results show that the solutions obtained are satisfactory for the comparative study.

Downloads

Download data is not yet available.

Article Details

References

J. N. Reddy: An Introduction to the Finite Element Method. Singapore: McGraw-Hill, Second Edition, 1993.

A. Amirkhanian, D. Spring, J. Roesler, K. Park, G. Paulino, “Disk-shaped Compact Tension Test for Plain Concrete”, in T&DI Congress, Integrated Transportation and Development for a Better Tomorrow, 2011, pp. 688 – 698.

A. N. Amirkhanian, D. W. Spring, J. R. Roesler, G. H. Paulino, “Forward and Inverse Analysis of Concrete Fracture Using the Disk Shaped Compact Tension Test”, Journal of Testing and Evaluation, vol. 44, no. 1, pp. 625–634, January 2016, https://doi.org/10.1520/JTE20140312.

J. Caicedo, A. Portela, “Direct computation of stress intensity factors in finite element method”, European Journal of Computational Mechanics, vol. 26, no. 3, pp. 309–335, July 2017, http://dx. doi.org/10.1080/17797179.2017.1354578.

J. Retama, A. G. Ayala, “Influence of Crumb Rubber in the Mechanical Response of Modified Portland Cement Concrete”, Advances in Civil Engineering, vol. 2017, pp. 1–9, May 2017, https://doi.org/10.1155/2017/3040818.

J. Yang, H. Lian, W. Liang, V. P. Nguyen, S. P. A. Bordas, “Model I cohesive zone models of different rank coals”, International Journal of Rock Mechanics and Mining Sciences, vol. 115, pp. 145–156, March 2019, https://doi.org/10.1016/j.ijrmms.2019.01.001.

M. Janssen, J. Zuidema, and R. J. H. Wanhill: Fracture Mechanics. New York: VSSD, Second Edition, 2006.

T. L. Anderson: Fracture Mechanics Fundamentals and applications. Boca Raton: CRC Press, Taylor & Francis, Third edition, 2005.

N. A. García. “Quantificação da Incerteza em modelos de fratura e fadiga utilizando polinômios de expansão de caos”. PhD. dissertation, Department of Civil and Environmental Engineering, University of Brasília, Brasília, Brazil, 2019.

R. J. Sanford: Principles of Fracture Mechanics. Upper Saddle River, NJ: Prentice Hall, 2003.

H. Tada, P. C. Paris, and G. R. Irwin: The Stress Analysis of Cracks Handbook. New York: ASME Press, Third Edition, 2000.

American Society for Testing and Materials (ASTM): E399 – Standard test method for linear-elastic plane strain fracture toughness KIC of metallic materials. United States, 2009, pp. 1 – 33.

Most read articles by the same author(s)

OJS System - Metabiblioteca |