A topological approach to the study of COVID-19 pandemic: qualitative models for understanding and helping taking decisions
Un abordaje topológico en el estudio de la pandemia COVID-19: modelos cualitativos para comprender y ayudar a tomar decisiones
Main Article Content
Mathematical models are either strategic, simplified, to study global qualitative properties, or tactic, detailed, appropriate for fine quantitative adjustment to reality. When complex systems interact with their medium or undergo parameter perturbations, they can suffer changes of order making qualitative and quantitative studies difficult. Epidemiological processes allow distinguishing between topological and dynamical alterations, and establishing precedence among them. In this essay we approach COVID-19 this way, to separate topological transformations inducing changes of order in the system, from dynamic transformations themselves. We then develop a visual metaphor, a sequence of images to support a stop-motion, allowing distinguishing the stages, identifying and classifying sceneries, and suggest actions to improve the understanding and control, of the pandemic.
Downloads
Article Details
S. P. Huntington. The Clash of Civilizations and the Remaking of the World Order. New York: SI-MON & SCHUSTER, 2003.
F. Brauer, “Mathematical epidemiology: Past, present, and future,” Infectious Disease Model-ling, 2, pp. 113-127, 2017. Doi: https://doi:10.1016/j.idm.2017.02.001.
M. Hirsch and S. Smale. Differential Equations, Dynamical Systems, and Linear Algebra, New York, Academic Press, 1974.
V. I. Arnol’d, Ordinary Differential Equations, Berlin, Springer-Verlag, 1992.
K. S. Sibirsky, Introduction to topological dy-namics, Leyden, Noordhoff International Pub-lishing, 1975.
H. Rago, Brevísima biografía. In H. Rago (Com-piler), L. Herrera, C. Domingo, D. Morales, and A. Capelletti, Newton, pp. 13-23, Mérida, Uni-versidad de Los Andes, 2005.
H. Rago and L. Herrera. Newton y el universo físico. In H. Rago (Compiler), L. Herrera, C. Do-mingo, D. Morales, and A. Capelletti, Newton, pp. 25-96, Mérida, Universidad de Los Andes, 2005.
M. Farkas and M. Pidal, Estabilidad estructural y bifurcaciones, Caracas, Universidad Central de Venezuela, 1981.
D. K. Arrowsmith and C. M. Place, An introduc-tion to dynamical systems, Cambridge, Cam-bridge University Press, 1990.
J. Hale. Ordinary Differential Equations, New York, Wiley-Interscience, 1969.
E. Coddington and N. Levison, Theory of Or-dinary Differential Equations, New Delhi, Tata McGraw-Hill, 1977.
P. Hartman. Ordinary Differential Equations, Second Edition, Boston, Birkhäuser, 1982.
V. V. Nemytski and V. V. Stepanov. Qualitative Theory of Differential Equations, Fourth Print-ing, Princeton, Princeton University Press, 1972.
L. Elsglotz, Ecuaciones Diferenciales y Cálculo Variacional, Moscú, MIR, 1969.
F. Verhulst. Nonlinear Differential Equations and Dynamical Systems, Berlin, Springer-Verlag, 1990.
L. Perko. Differential Equations and Dynamical Systems, Second Edition, New York, Spring-er-Verlag, 1996.
H. Amann. Ordinary Differential Equations – An Introduction to Nonlinear Analysis, Berlin, Wal-ter de Gruyter, 1990
J. Dugundji. Topology, Boston, Allyn and Bacon, Inc., 1966.
J. Munkres. Topology: A First Course, Engle-wood Cliffs, Prentice-Hall, 1975.
J. Rodríguez-Millán. “A topological approach to designing and constructing dynamical visual metaphors of multicultural and intercultural sys-tems II-A”, Revista Ciencia e Ingeniería, Vol. 41, no. 1, pp. 111-122, diciembre-marzo, 2020.
J. Rodríguez-Millán. “A topological approach to designing and constructing dynamical visual metaphors of multicultural and intercultural sys-tems I”, Revista Ciencia e Ingeniería, Vol. 40, no. 3, pp. 253-260, agosto-noviembre, 2019.
D. Cyranoski. Profile of a Killer Virus, Nature, Vol. 581, pp. 23-26, 7 May, 2020.
John Hopkins University of Medicine, COV-ID-19 Dashboard by the Center for Systems Sci-ence and Engineering, https://coronavirus.jhu.edu/map.html.
F. Brauer. Compartmental Models in Epidemiol-ogy, In F. Brauer, P. van den Driessche, and J. Wu (Editors), Mathematical Epidemiology, pp. 19-78, Berlin, Springer-Verlag, 2008.
A. Sette and S. Crotty. Pre-existing immunity to SARS-CoV-2: the knowns and unknowns, Nature Review/Immuno- logy, 2020. Doi:https://doi.org/10.1038/s41577-020-0389-z
G. Giordano, F. Blanchini, R. Bruno, P. Colan-eri, A. Di Filippo, A. Di Matteo and M. Colaneri, Modelling the COVID-19 epidemic and imple-mentation of population-wide interventions in Italy, Nature Medicine, https://doi.org/10.1038/s41591-020-0883-7 (22 April 2020)