The main technologies of the industry 5.0 era
Las principales tecnologías de la era de la industria 5.0
Main Article Content
Currently, the industrial environment and society in general is in the dynamics of Industry 4.0, which is laying the foundations for the next industrial revolution. At the same time, the global health difficulties derived from COVID-19 are causing companies to look for solutions to continue operating, this situation in any case, causing industry 5.0 to take an exponential leap, causing companies to implement new manufacturing processes. Therefore, this new industrial revolution consists of taking advantage of and developing artificial intelligence to give way to the main characteristic that defines it, which is the collaboration between man and machine, working together while machines perform the heaviest and most repetitive tasks. Likewise, people are in charge of monitoring activities. Additionally, one of the fundamental elements of I.5 are industrial cobots (robotic system instituted to work together with humans) although cobots and other elements regardless of the main topic, there are also other very important aspects such as society 5.0 and the bioeconomy. In this way, this is why the main objective of this research is to present the transcendental technologies in Industry 5.0.
Downloads
Article Details
K. A. Demir, G. Döven and B. Sezen, “Industry 5.0 and Human-Robot Co-working,” Procedia Computer Science, vol. 158, pp. 688–695, Jan. 2019, doi: 10.1016/j.procs.2019.09.104 DOI: https://doi.org/10.1016/j.procs.2019.09.104
M. Caggiano, C. Semeraro and M. Dassisti, “A Metamodel for Designing Assessment Models to support transition of production systems towards Industry 5.0,” Computers in Industry, vol. 152, p. 104008, Nov. 2023, doi: 10.1016/j.compind.2023.104008 DOI: https://doi.org/10.1016/j.compind.2023.104008
P. K. R. Maddikunta et al., “Industry 5.0: A survey on enabling technologies and potential applications,” Journal of Industrial Information Integration, vol. 26, p. 100257, Mar. 2022, doi: 10.1016/j.jii.2021.100257 DOI: https://doi.org/10.1016/j.jii.2021.100257
H. V. der L. Ulloa, “Revolución Industrial: una Revolución Técnica,” Revista de Estudios Sociales, no. 9, Art. no. 9, 1991, doi: 10.15517/re.v0i9.29788
V. V. Martynov, D. N. Shavaleeva and A. A. Zaytseva, “Information Technology as the Basis for Transformation into a Digital Society and Industry 5.0,” in 2019 International Conference “Quality Management, Transport and Information Security, Information Technologies” (IT&QM&IS), Sep. 2019, pp. 539–543. doi: 10.1109/ITQMIS.2019.8928305 DOI: https://doi.org/10.1109/ITQMIS.2019.8928305
V. Özdemir and N. Hekim, “Birth of Industry 5.0: Making Sense of Big Data with Artificial Intelligence, ‘The Internet of Things’ and Next-Generation Technology Policy,” OMICS Journal of Integrative Biology, vol. 22, no. 1, pp. 65–76, Jan. 2018, doi: 10.1089/omi.2017.0194 DOI: https://doi.org/10.1089/omi.2017.0194
M. Grzegorczyk, M. Mariniello, L. Nurski and T. Schraepen, “Blending the physical and virtual: A hybrid model for the future of work,” Bruegel Policy Contribution, Research Report 14/2021, 2021. https://www.econstor.eu/handle/10419/251067
A. Konovalov and C. C. Ruff, “Enhancing models of social and strategic decision making with process tracing and neural data,” WIREs Cognitive Science, vol. 13, no. 1, p. e1559, 2022, doi: 10.1002/wcs.1559 DOI: https://doi.org/10.1002/wcs.1559
M. Stella, “Cognitive Network Science for Understanding Online Social Cognitions: A Brief Review,” Topics in Cognitive Science, vol. 14, no. 1, pp. 143–162, 2022, doi: 10.1111/tops.12551 DOI: https://doi.org/10.1111/tops.12551
G. K. Deutsch et al., “Brief assessment of cognitive function in myotonic dystrophy: Multicenter longitudinal study using computer-assisted evaluation,” Muscle Nerve, vol. 65, no. 5, pp. 560–567, 2022, doi: 10.1002/mus.27520 DOI: https://doi.org/10.1002/mus.27520
Y. Chen, J. Elenee Argentinis and G. Weber, “IBM Watson: How Cognitive Computing Can Be Applied to Big Data Challenges in Life Sciences Research,” Clinical Therapeutics, vol. 38, no. 4, pp. 688–701, Apr. 2016, doi: 10.1016/j.clinthera.2015.12.001 DOI: https://doi.org/10.1016/j.clinthera.2015.12.001
S. Katiyar and K. Katiyar, “Chapter 2 - Recent trends towards cognitive science: from robots to humanoids,” in Cognitive Computing for HumanRobot Interaction, M. Mittal, R. R. Shah, and S. Roy, Eds., in Cognitive Data Science in Sustainable Computing. , Academic Press, 2021, pp. 19–49. doi: 10.1016/B978-0-323-85769-7.00012-4 DOI: https://doi.org/10.1016/B978-0-323-85769-7.00012-4
S. Wan, Z. Gu and Q. Ni, “Cognitive computing and wireless communications on the edge for healthcare service robots,” Computer Communications, vol. 149, pp. 99–106, Jan. 2020, doi: 10.1016/j.comcom.2019.10.012 DOI: https://doi.org/10.1016/j.comcom.2019.10.012
S. Gupta, A. K. Kar, A. Baabdullah and W. A. A. Al-Khowaiter, “Big data with cognitive computing: A review for the future,” International Journal of Information Management, vol. 42, pp. 78–89, Oct. 2018, doi: 10.1016/j.ijinfomgt.2018.06.005 DOI: https://doi.org/10.1016/j.ijinfomgt.2018.06.005
S. Wu, M. Wang and Y. Zou, “Bidirectional cognitive computing method supported by cloud technology,” Cognitive Systems Research, vol. 52, pp. 615–621, Dec. 2018, doi: 10.1016/j.cogsys.2018.07.035 DOI: https://doi.org/10.1016/j.cogsys.2018.07.035
G. P. V. Arévalo, T. V. Pérez and H. F. C. Silva, “Digital transformation in state entities,” Revista Ingenio, vol. 20, no. 1, pp. 53–58, 2023, doi: https://doi.org/10.22463/2011642X.3674 DOI: https://doi.org/10.22463/2011642X.3674
T. Q. Sun and R. Medaglia, “Mapping the challenges of Artificial Intelligence in the public sector: Evidence from public healthcare,” Government Information Quarterly, vol. 36, no. 2, pp. 368–383, Apr. 2019, doi: 10.1016/j.giq.2018.09.008 DOI: https://doi.org/10.1016/j.giq.2018.09.008
S. Fatima, K. C. Desouza and G. S. Dawson, “National strategic artificial intelligence plans: A multi-dimensional analysis,” Economic Analysis and Policy, vol. 67, pp. 178–194, Sep. 2020, doi: 10.1016/j.eap.2020.07.008 DOI: https://doi.org/10.1016/j.eap.2020.07.008
J. Ribeiro, R. Lima, T. Eckhardt and S. Paiva, “Robotic Process Automation and Artificial Intelligence in Industry 4.0 – A Literature review,” Procedia Computer Science, vol. 181, pp. 51–58, Jan. 2021, doi: 10.1016/j.procs.2021.01.104 DOI: https://doi.org/10.1016/j.procs.2021.01.104
F. Stella and J. Hughes, “The science of soft robot design: A review of motivations, methods and enabling technologies,” Frontiers in Robotics and AI, vol. 9, 2023, https://www.frontiersin.org/articles/10.3389/frobt.2022.1059026 DOI: https://doi.org/10.3389/frobt.2022.1059026
M. Maroto-Gómez, F. Alonso-Martín, M. Malfaz, Á. Castro-González, J. C. Castillo and M. Á. Salichs, “A Systematic Literature Review of Decision-Making and Control Systems for Autonomous and Social Robots,” International Journal of Social Robotics , vol. 15, no. 5, pp. 745– 789, May 2023, doi: 10.1007/s12369-023-00977-3 DOI: https://doi.org/10.1007/s12369-023-00977-3
A. Amanian, A. Heffernan, M. Ishii, F. X. Creighton and A. Thamboo, “The Evolution and Application of Artificial Intelligence in Rhinology: A State of the Art Review,” Otolaryngology-Head and Neck Surgery, vol. 169, no. 1, pp. 21–30, 2023, doi: 10.1177/01945998221110076 DOI: https://doi.org/10.1177/01945998221110076
J. M. Rožanec et al., “Human-centric artificial intelligence architecture for industry 5.0 applications,” International Journal of Production Research, vol. 61, no. 20, pp. 6847–6872, Oct. 2023, doi: 10.1080/00207543.2022.2138611 DOI: https://doi.org/10.1080/00207543.2022.2138611
A. S. M. Sahan, S. Kathiravan, M. Lokesh and R. Raffik, “Role of Cobots over Industrial Robots in Industry 5.0: A Review,” in 2023 2nd International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), Jun. 2023, pp. 1–5. doi: 10.1109/ICAECA56562.2023.10201199 DOI: https://doi.org/10.1109/ICAECA56562.2023.10201199
U. Kumar et al., “A systematic review of Industry 5.0 from main aspects to the execution status,” TQM J., vol. ahead-of-print, no. ahead-of-print, Jan. 2023, doi: 10.1108/TQM-06-2023-0183 DOI: https://doi.org/10.1108/TQM-06-2023-0183
R. R, R. R. Sathya, V. V, B. S and J. L. N, “Industry 5.0: Enhancing Human-Robot Collaboration through Collaborative Robots – A Review,” in 2023 2nd International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), Jun. 2023, pp. 1–6. doi: 10.1109/ICAECA56562.2023.10201120 DOI: https://doi.org/10.1109/ICAECA56562.2023.10201120
M. Faccio et al., “Human factors in cobot era: a review of modern production systems features,” J. Intell. Manuf., vol. 34, no. 1, pp. 85–106, Jan. 2023, doi: 10.1007/s10845-022-01953-w DOI: https://doi.org/10.1007/s10845-022-01953-w
C. Taesi, F. Aggogeri and N. Pellegrini, “COBOT Applications—Recent Advances and Challenges,” Robotics, vol. 12, no. 3, Art. no. 3, Jun. 2023, doi: 10.3390/robotics12030079 DOI: https://doi.org/10.3390/robotics12030079
R. A. Abdelouahid, O. Debauche and A. Marzak, “Internet of Things: a new Interoperable IoT Platform. Application to a Smart Building,” Procedia Computer Science, vol. 191, pp. 511–517, Jan. 2021, doi: 10.1016/j.procs.2021.07.066 DOI: https://doi.org/10.1016/j.procs.2021.07.066
N. Sharma, M. Shamkuwar and I. Singh, “The History, Present and Future with IoT,” in Internet of Things and Big Data Analytics for Smart Generation, V. E. Balas, V. K. Solanki, R. Kumar, and M. Khari, Eds., in Intelligent Systems Reference Library. , Cham: Springer International Publishing, 2019, pp. 27–51. doi: 10.1007/978-3-030-04203-5_3 DOI: https://doi.org/10.1007/978-3-030-04203-5_3
K. Y. Sánchez-Mojica, L. A. Pérez-Domínguez, J. Gutiérrez Londoño and D. O. Cardozo Sarmiento, “A Data Analytic Monitoring with IoT System of the Reproductive Conditions of the Red Worm as a Product Diversification Strategy,” Applied Sciences, vol. 13, no. 18, Art. no. 18, Jan. 2023, doi: 10.3390/app131810522 DOI: https://doi.org/10.3390/app131810522
J. Davis et al., “Smart Manufacturing,” Annual Review of Chemical and Biomolecular Engineering, vol. 6, no. 1, pp. 141–160, 2015, doi: 10.1146/annurev-chembioeng-061114-123255 DOI: https://doi.org/10.1146/annurev-chembioeng-061114-123255
A. Kusiak, “Smart Manufacturing,” in Springer Handbook of Automation, S. Y. Nof, Ed., in Springer Handbooks. , Cham: Springer International Publishing, 2023, pp. 973–985. doi: 10.1007/978-3-030-96729-1_45 DOI: https://doi.org/10.1007/978-3-030-96729-1_45
S. Tiwari, P. C. Bahuguna and R. Srivastava, “Smart manufacturing and sustainability: a bibliometric analysis,” Benchmarking: An International Journal, vol. 30, no. 9, pp.3281–3301, Jan. 2022, doi: 10.1108/BIJ-04-2022-0238 DOI: https://doi.org/10.1108/BIJ-04-2022-0238
N. U. Huda, I. Ahmed, M. Adnan, M. Ali and F. Naeem, “Experts and intelligent systems for smart homes’ Transformation to Sustainable Smart Cities: A comprehensive review,” Expert Systems with Applications, vol. 238, p. 122380, Mar. 2024, doi: 10.1016/j.eswa.2023.122380 DOI: https://doi.org/10.1016/j.eswa.2023.122380
F. Ullah nd F. Al-Turjman, “A conceptual framework for blockchain smart contract adoption to manage real estate deals in smart cities,” Neural Computing and Applications, vol. 35, no. 7, pp. 5033–5054, Mar. 2023, doi: 10.1007/s00521-021-05800-6 DOI: https://doi.org/10.1007/s00521-021-05800-6
M. Golovianko, V. Terziyan, V. Branytskyi and D. Malyk, “Industry 4.0 vs. Industry 5.0: Co-existence, Transition, or a Hybrid,” Procedia Computer Science, vol. 217, pp. 102–113, Jan. 2023, doi: 10.1016/j.procs.2022.12.206 DOI: https://doi.org/10.1016/j.procs.2022.12.206
M. Attaran, “The impact of 5G on the evolution of intelligent automation and industry digitization,” Journal of Ambient Intelligence and Humanized Computing, vol. 14, no. 5, pp. 5977–5993, May 2023, doi: 10.1007/s12652-020-02521-x DOI: https://doi.org/10.1007/s12652-020-02521-x
B. Alhayani et al., “5G standards for the Industry 4.0 enabled communication systems using artificial intelligence: perspective of smart healthcare system,” Applied Nanoscience, vol. 13, no. 3, pp. 1807–1817, Mar. 2023, doi: 10.1007/s13204-021-02152-4 DOI: https://doi.org/10.1007/s13204-021-02152-4
A. Mehrish, N. Majumder, R. Bharadwaj, R. Mihalcea and S. Poria, “A review of deep learning techniques for speech processing,” Information Fusion, vol. 99, p. 101869, Nov. 2023, doi: 10.1016/j.inffus.2023.101869 DOI: https://doi.org/10.1016/j.inffus.2023.101869
J. Pan, J. Huang, G. Cheng and Y. Zeng, “Reinforcement learning for automatic quadrilateral mesh generation: A soft actor–critic approach,” Neural Network., vol. 157, pp. 288–304, Jan. 2023, doi: 10.1016/j.neunet.2022.10.022 DOI: https://doi.org/10.1016/j.neunet.2022.10.022
S. Civilibal, K. K. Cevik and A. Bozkurt, “A deep learning approach for automatic detection, segmentation and classification of breast lesions from thermal images,” Expert Systems with Applications, vol. 212, p.118774, Feb. 2023, doi: 10.1016/j.eswa.2022.118774 DOI: https://doi.org/10.1016/j.eswa.2022.118774
X. Li, P. Zheng, J. Bao, L. Gao and X. Xu, “Achieving Cognitive Mass Personalization via the Self-X Cognitive Manufacturing Network: An Industrial Knowledge Graph- and Graph Embedding-Enabled Pathway,” Engineering, vol. 22, pp. 14–19, Mar. 2023, doi: 10.1016/j.eng.2021.08.018 DOI: https://doi.org/10.1016/j.eng.2021.08.018
J. Vazquez-Armendariz et al., “Workflow for Robotic Point-of-Care Manufacturing of Personalized Maxillofacial Graft Fixation Hardware,” Integrating Materials and Manufacturing Innovation, vol. 12, no. 2, pp. 92–104, Jun. 2023, doi: 10.1007/s40192-023-00298-3 DOI: https://doi.org/10.1007/s40192-023-00298-3
R. García-González, J. A. Paredes-Castañeda, y E. Bayona-Ibáñez, “DMAIC como herramienta para implementar un sistema de mejora para incrementar la productividad en la industria del sombrero,” Revista Ingenio, vol. 20, no. 1, Jan. 2023, doi:
https://doi.org/10.22463/2011642X.3371 DOI: https://doi.org/10.22463/2011642X.3371
X. Zhang and X. Ming, “A Smart system in Manufacturing with Mass Personalization (S-MMP) for blueprint and scenario driven by industrial model transformation,” Journal of Intelligent Manufacturing, vol. 34, no. 4, pp. 1875–1893, Apr. 2023, doi: 10.1007/s10845-021-01883-z DOI: https://doi.org/10.1007/s10845-021-01883-z
S. E. Barykin et al., “Smart City Logistics on the Basis of Digital Tools for ESG Goals Achievement,” Sustainability, vol. 15, no. 6, Art. no. 6, Jan. 2023, doi: 10.3390/su15065507 DOI: https://doi.org/10.3390/su15065507
E. Flores-García, Y. Jeong, S. Liu, M. Wiktorsson, and L. Wang, “Enabling industrial internet of things-based digital servitization in smart production logistics,” International Journal of Production Research, vol. 61, no. 12, pp. 3884–3909, Jun. 2023, doi: 10.1080/00207543.2022.2081099 DOI: https://doi.org/10.1080/00207543.2022.2081099
R. Pereira and N. dos Santos, “Neoindustrialization—Reflections on a New Paradigmatic Approach for the Industry: A Scoping Review on Industry 5.0,” Logistics, vol. 7, no. 3, Art. no. 3, Sep. 2023, doi: 10.3390/logistics7030043 DOI: https://doi.org/10.3390/logistics7030043
B. Alojaiman, “Technological Modernizations in the Industry 5.0 Era: A Descriptive Analysis and Future Research Directions,” Processes, vol. 11, no. 5, Art. no. 5, May 2023, doi: 10.3390/pr11051318 DOI: https://doi.org/10.3390/pr11051318
S. Rajumesh, “Promoting sustainable and humancentric industry 5.0: a thematic analysis of emerging research topics and opportunities,” Journal of business and socio-economic development, vol. ahead-of-print, no. ahead-of-print, Jan. 2023, doi: 10.1108/JBSED-10-2022-0116 DOI: https://doi.org/10.1108/JBSED-10-2022-0116
X. Wang et al., “Steps Toward Industry 5.0: Building ‘6S’ Parallel Industries With Cyber-Physical-Social Intelligence,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 8, pp. 1692–1703, Aug. 2023, doi: 10.1109/JAS.2023.123753 DOI: https://doi.org/10.1109/JAS.2023.123753
L. Gomathi, A. K. Mishra, and A. K. Tyagi, “Industry 5.0 for Healthcare 5.0: Opportunities, Challenges and Future Research Possibilities,” in 2023 7th International Conference on Trends in Electronics and Informatics (ICOEI), Apr. 2023, pp. 204–213.
doi: 10.1109/ICOEI56765.2023.10125660 DOI: https://doi.org/10.1109/ICOEI56765.2023.10125660
S. Ray, E. V. Korchagina, R. U. Nikam, and R. K. Singhal, “A Blockchain-based Secure Healthcare Solution for Poverty-led Economy of IoMT Under Industry 5.0,” in Inclusive Developments Through Socio-economic Indicators: New Theoretical and Empirical Insights, R. Chandra Das, Ed., Emerald Publishing Limited, 2023, pp. 269–280. doi: 10.1108/978-1-80455-554-520231022 DOI: https://doi.org/10.1108/978-1-80455-554-520231022
A. Selvam, T. Aggarwal, M. Mukherjee, and Y. K. Verma, “Humans and robots: Friends of the future? A bird’s eye view of biomanufacturing industry 5.0,” Biotechnology Advances, vol. 68, p. 108237, Nov. 2023, doi: 10.1016/j.biotechadv.2023.108237 DOI: https://doi.org/10.1016/j.biotechadv.2023.108237
S. Dalal, B. Seth, and M. Radulescu, “Driving Technologies of Industry 5.0 in the Medical Field,” in Digitalization, Sustainable Development, and Industry 5.0, B. Akkaya, S. Andreea Apostu, E. Hysa, and M. Panait, Eds., Emerald Publishing Limited, 2023, pp.
–292. doi: 10.1108/978-1-83753-190-520231014 DOI: https://doi.org/10.1108/978-1-83753-190-520231014
M. Khan, A. Haleem, and M. Javaid, “Changes and improvements in Industry 5.0: A strategic approach to overcome the challenges of Industry 4.0,” Green Technologies and Sustainability, vol. 1, no. 2, p. 100020, May 2023, doi: 10.1016/j.grets.2023.100020 DOI: https://doi.org/10.1016/j.grets.2023.100020
S. Yin and Y. Yu, “An adoption-implementation framework of digital green knowledge to improve the performance of digital green innovation practices for industry 5.0,”Journal of Cleaner Production, vol. 363, p. 132608, Aug. 2022, doi: 10.1016/j.jclepro.2022.132608 DOI: https://doi.org/10.1016/j.jclepro.2022.132608
N. Bijon, T. Wassenaar, G. Junqua, and M. Dechesne, “Towards a Sustainable Bioeconomy through Industrial Symbiosis: Current Situation and Perspectives,” Sustainability, vol. 14, no. 3, Art. no. 3, Jan. 2022, doi: 10.3390/su14031605 DOI: https://doi.org/10.3390/su14031605
W. Y. Cheah, R. P. Siti-Dina, S. T. K. Leng, A. C. Er, and P. L. Show, “Circular bioeconomy in palm oil industry: Current practices and future perspectives,” Environmental Technology & Innovation, vol. 30, p. 103050, May 2023, doi: 10.1016/j.eti.2023.103050 DOI: https://doi.org/10.1016/j.eti.2023.103050
B. Rethinam, R. Palanichamy, and J. D. John Britto, “Analysis of Batch Kinetic Data of Biodecolorization Reaction: Theoretical Approach for the Design of Packed Bed Reactor,” Journal of Environmental Engineering, vol. 149, no. 10, p. 04023056, Oct. 2023, doi: 10.1061/JOEEDU.EEENG-7269 DOI: https://doi.org/10.1061/JOEEDU.EEENG-7269
R. Sindhwani, S. Afridi, A. Kumar, A. Banaitis, S. Luthra, and P. L. Singh, “Can industry 5.0 revolutionize the wave of resilience and social value creation? A multi-criteria framework to analyze enablers,” Technology in Society , vol. 68, p. 101887, Feb. 2022, doi: 10.1016/j.techsoc.2022.101887 DOI: https://doi.org/10.1016/j.techsoc.2022.101887
G. A. V. Clavijo y A. M. G. Bayona, “Ciudad Inteligente: mejoramiento de la seguridad ciudadana a través del uso de nuevas tecnologías,” Revista Ingenio, vol. 20, no. 1, pp. 32–39, 2023, doi: https://doi.org/10.22463/2011642X.3510 DOI: https://doi.org/10.22463/2011642X.3510
F. Ince, “Socio-Ecological Sustainability Within the Scope of Industry 5.0,” in Implications of Industry 5.0 on Environmental Sustainability, IGI Global, 2023, pp. 25–50. doi: 10.4018/978-1-6684-6113-6.ch002 DOI: https://doi.org/10.4018/978-1-6684-6113-6.ch002
B. C. Quintero y W. A. D. Neira, “Habilidades de pensamiento computacional en niños y niñas de las escuelas primarias utilizando tecnologías 4.0: un análisis bibliométrico,” Revista Ingenio, vol. 20, no. 1, pp. 40–45, 2023, doi: https://doi.org/10.22463/2011642X.3603 DOI: https://doi.org/10.22463/2011642X.3603
D. Romero and J. Stahre, “Towards The Resilient Operator 5.0: The Future of Work in Smart Resilient Manufacturing Systems,” Procedia CIRP, vol.104, pp. 1089–1094, Jan. 2021, doi: 10.1016/j.procir.2021.11.183 DOI: https://doi.org/10.1016/j.procir.2021.11.183
S. Chourasia, A. Tyagi, Q. Murtaza, R. S. Walia, and P. Sharma, “A Critical Review on Industry 5.0 and Its Medical Applications,” in Advances in Modelling and Optimization of Manufacturing and Industrial Systems, R. P. Singh, M. Tyagi, R. S. Walia, and
J. P. Davim, Eds., in Lecture Notes in Mechanical Engineering. Singapore: Springer Nature, 2023, pp. 251–261. doi: 10.1007/978-981-19-6107-6_18 DOI: https://doi.org/10.1007/978-981-19-6107-6_18
R. Tallat et al., “Navigating Industry 5.0: A Survey of Key Enabling Technologies, Trends, Challenges, and Opportunities,” IEEE Communications Surveys & Tutorials, pp. 1–1, 2023, doi: 10.1109/COMST.2023.3329472 DOI: https://doi.org/10.1109/COMST.2023.3329472
J. Pizoń and A. Gola, “Human–Machine Relationship—Perspective and Future Roadmap for Industry 5.0 Solutions,” Machines, vol. 11, no. 2, Art. no. 2, Feb. 2023, doi: 10.3390/machines11020203 DOI: https://doi.org/10.3390/machines11020203
I. Yaqoob, K. Salah, R. Jayaraman, and M. Omar, “Metaverse applications in smart cities: Enabling technologies, opportunities, challenges, and future directions,” Internet Things, vol. 23, p. 100884, Oct. 2023, doi: 10.1016/j.iot.2023.100884 DOI: https://doi.org/10.1016/j.iot.2023.100884
C. Jiang, C. Fu, Z. Zhao, and X. Du, “Effective Anomaly Detection in Smart Home by Integrating Event Time Intervals,” Procedia Computer Science, vol. 210, pp. 53–60, Jan. 2022, doi: 10.1016/j.procs.2022.10.119 DOI: https://doi.org/10.1016/j.procs.2022.10.119
J. Wang, R. Wang, H. Cai, L. Li, and Z. Zhao, “Smart household electrical appliance usage behavior of residents in China: Converging the theory of planned behavior, value-belief-norm theory and external information,” Energy Build., vol. 296, p. 113346, Oct.
, doi: 10.1016/j.enbuild.2023.113346 DOI: https://doi.org/10.1016/j.enbuild.2023.113346
J. Vanus, R. Hercik, and P. Bilik, “Using Interoperability between Mobile Robot and KNX Technology for Occupancy Monitoring in Smart Home Care,” Sensors, vol. 23, no. 21, Art. no. 21, Jan. 2023, doi: 10.3390/s23218953 DOI: https://doi.org/10.3390/s23218953
I. Froiz-Míguez, P. Fraga-Lamas, and T. M. FernándezCaraméS, “Design, Implementation, and Practical Evaluation of a Voice Recognition Based IoT Home Automation System for Low-Resource Languages and Resource-Constrained Edge IoT Devices: A
System for Galician and Mobile Opportunistic Scenarios,” IEEE Access, vol. 11, pp. 63623–63649, 2023, doi: 10.1109/ACCESS.2023.3286391 DOI: https://doi.org/10.1109/ACCESS.2023.3286391