Intertropical frost, its impacts and mitigation: A bibliometric review

Helada intertropical, sus impactos y mitigación: Una revisión bibliométrica

Main Article Content

Diego Fernando Ortiz-Carrascal
Diego Alejandro Guzmán Arias
Abstract

Frost is a climatic phenomenon in which the temperature drops to 0ºC or lower for a specific period. This phenomenon causes irreparable damage to the plant material present in the soil, significantly impacting the agro-industrial sector. Therefore, this bibliographic review aims to identify the most relevant documents on the study of intertropical frost, its impacts, and mitigation efforts worldwide, utilizing the free software R-Studio and the Bibliometrix package. The results show that 24 documents were published from 1980 to 2024, with a growth rate of 1.63%. The articles were written by 20 authors, including 1 review article and 23 research articles published in 18 journals. These documents primarily came from countries such as the USA, Australia, France, and the Netherlands, and were mainly published in journals like Icarus, Journal of Climate, and Atmospheric Chemistry and Physics. Finally, deepening the study of this phenomenon is crucial to increase scientific knowledge and generate actions to predict its occurrence and implement mitigation strategies that positively impact the socioeconomic development of affected areas. From this perspective, this article synthesizes research on intertropical frost, its impacts, and mitigation, through a comprehensive review of scientific literature from databases and repositories.

Keywords

Downloads

Download data is not yet available.

Article Details

References

J. D. Pabón Caicedo, “Cambio climático en Colombia: Tendencias en la segunda mitad del siglo XX y escenarios posibles para el siglo XXI,” Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., vol. 36, pp. 261–278, Jun. 2012.

Y. F. Martínez- Estupiñán, C. Martínez-Guerra, y O. Carrero-Monroy, “De vías férreas a carreteras urbanas. Análisis para la ciudad de Barrancabermeja ,” Revista Ingenio, vol. 16, no. 1 SE-Artículos de Investigación, pp. 16–22, Jan. 2019, doi: https://doi.org/10.22463/2011642X.2345.

L. N. y J. N., “Efectos del cambio climático: Una mirada al Campo,” Rev. Ciencias Agrícolas, vol. 35, pp. 79–91, Dec. 2018, doi: https://doi.org/10.22267/rcia.183502.93.

D. M. Criado-Rodríguez, W. A. Pacheco-Vergel, y N. Afanador-García, “Vulnerabilidad sísmica de centros poblados: estudio de caso,” Revista Ingenio, vol. 17, no. 1 SE-Artículos de Investigación, pp. 43–48, Jan. 2020, doi: https://doi.org/10.22463/2011642X.2441.

M. Andrades Rodrigues y C. Nuñes Leon, “Fundamentos de climatología,” España, 2012. doi: 978-84-695-2799-3.

R. A. García-León, M. Grave-Capistran, J. Maya-López, y A. Ballesteros-Argüello, “Evaluación experimental de esfuerzos usando la correlación de imagen digital,” Revista Ingenio, vol. 18, no. 1, pp. 49–53, 2021, doi: https://doi.org/10.22463/2011642X.2670

E. S. López et al., “Bibliometry, an eficcient to assess the postgraduate scientific activity,” Medisur, vol. 7, no. 4, pp. 291–294, 2009.

T. A. Escorcia Otálora, “Análisis bibliométrico como herramienta para el seguimiento de publicaciones científicas, tesis y trabajos de grado,” Pontificia Universidad Javeriana, 2008. [Online]. Available: https://repository.javeriana.edu.co/handle/10554/8212

R. D. Buitrago-Pulido, “Análisis bibliométrico sobre la producción científica en distribución en planta en la red Redalyc durante el periodo 2007 - 2017,” Sci. Tech., vol. 24, no. 3 SE-Industrial, pp. 446–450, Sep. 2019, doi: https://doi.org/10.22517/23447214.21401

E. D. Quintero-Duran, J. C. Bayona-Gómez, M. A. Grave-Capistran, L. A. Moreno-Pacheco, J. Martínez-Trinidad, y R. A. García-León, “Análisis bibliométrico sobre las tendencias actuales de la normativa utilizada en tanques de almacenamiento de petróleo,” Revista Ingenio, vol. 21, no. 1 SE-Artículos de Investigación, pp. 45–53, Jan. 2024, doi: https://doi.org/10.22463/2011642X.4402.

SNIES-Mineducación, “Sistema Nacional de Información de la Educación Superior,” WebPage. [Online]. Available: https://hecaa.mineducacion.gov.co/consultaspublicas/ies

R. A. García-León, J. Martínez-Trinidad, y I. Campos-Silva, “Historical Review on the Boriding Process using Bibliometric Analysis,” Trans. Indian Inst. Met., vol. 74, no. March, pp. 541–557, 2021, doi: https://doi.org/10.1007/s12666-020-02174-6.

I. F. Aguillo, “Is Google Scholar useful for bibliometrics? A webometric analysis,” Scientometrics, vol. 91, no. 2, pp. 343–351, 2012, doi: https://doi.org/10.1007/s11192-011-0582-8.

R. Pico-Saltos, P. Carrión-Mero, N. Montalván-Burbano, J. Garzás, y A. Redchuk, “Research Trends in Career Success: A Bibliometric Review,” Sustainability , vol. 13, no. 9. 2021. doi: https://doi.org/10.3390/su13094625.

M. Visser, N. J. van Eck, y L. Waltman, “Large-scale comparison of bibliographic data sources: Scopus, Web of Science, Dimensions, Crossref, and Microsoft Academic,” Quant. Sci. Stud., vol. 2, no. 1, pp. 20–41, Apr. 2021, doi: https://doi.org/10.1162/qss_a_00112.

M. Aria y C. Cuccurullo, “bibliometrix : An R-tool for comprehensive science mapping analysis,” J. Informetr., vol. 11, no. 4, pp. 959–975, 2017, doi: https://doi.org/10.1016/j.joi.2017.08.007.

R. A. García-León, J. A. Gómez-Camperos, y H. Y. Jaramillo, “Scientometric Review of Trends on the Mechanical Properties of Additive Manufacturing and 3D Printing,” J. Mater. Eng. Perform., 2021, doi: https://doi.org/10.1007/s11665-021-05524-7.

L.-A. Casado-Aranda, J. Sánchez-Fernández, y M. I. Viedma-del-Jesús, “Analysis of the scientific production of the effect of COVID-19 on the environment: A bibliometric study,” Environ. Res., vol. 193, p. 110416, 2021, doi: https://doi.org/10.1016/j.envres.2020.110416.

B. Elango, “Growth of Scientific Publications: an Analysis of Top Ten Countries,” Libr. Philos. Pract., vol. 2018, pp. 1–10, 2018.

Q. He, G. Wang, L. Luo, Q. Shi, J. Xie, y X. Meng, “ScienceDirect Mapping the managerial areas of Building Information Modeling ( BIM ) using scientometric analysis,” Int. J. Proj. Manag., vol. 35, no. 4, pp. 670–685, 2017, doi: https://doi.org/10.1016/j.ijproman.2016.08.001.

C. V. dos Santos-Araújo, J. P. Matos-Xavier, y R. Lopes-Pereira, “Determinación de esfuerzos en losas de hormigón bidireccional mediante el método de diferencias finitas,” Revista Ingenio, vol. 18, no. 1 SE-Artículos de Investigación, pp. 25–32, Jan. 2021, doi: https://doi.org/10.22463/2011642X.2662.

FAO, Protección contra heladas: fundamentos, práctica y economía. Rima: FAO, 2010.

E. Caro, Calderón, “Predicción temprana de heladas en cultivos de altura, empleando métodos de aprendizaje de máquinas,” Universidad Nacional de Colombia, 2022.

T. Ayllon, Meteorología y climatología, México: Edtorial , 2018., Trillas. Mexico, 2013.

H. Haris, M. F. Chow, F. Usman, L. M. Sidek, Z. A. Roseli, y M. D. Norlida, “Urban Stormwater Management Model and Tools for Designing Stormwater Management of Green Infrastructure Practices,” IOP Conf. Ser. Earth Environ. Sci., vol. 32, p. 12022, 2016, doi: https://doi.org/10.1088/1755-1315/32/1/012022.

M. P. Ricardo Calzadilla, A. Gómez Arias, R. Martín Fernández, V. Cutie Cansino, y O. Martínez Díaz, “Estudio de las precipitaciones para el diseño de sistema de captación de agua de lluvia,” Rev. Ing. Agrícola; Vol. 10, Núm. 2 abril-mayo-junio, May 2020, [Online]. Available: https://revistas.unah.edu.cu/index.php/IAgric/article/view/1242

P. F. Hoffman et al., “Snowball Earth climate dynamics and Cryogenian geology-geobiology.,” Sci. Adv., vol. 3, no. 11, p. e1600983, Nov. 2017, doi: https://doi.org/10.1126/sciadv.1600983.

J. Pross et al., “Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch,” Nature, vol. 488, no. 7409, pp. 73–77, 2012, doi: https://doi.org/10.1038/nature11300.

L. A. Rossbacher y S. Judson, “Ground ice on Mars: Inventory, distribution, and resulting landforms,” Icarus, vol. 45, no. 1, pp. 39–59, 1981, doi: https://doi.org/10.1016/0019-1035(81)90005-1.

R. E. Dickinson et al., “Nitrogen Controls on Climate Model Evapotranspiration,” J. Clim., vol. 15, no. 3, pp. 278–295, 2002, doi: https://doi.org/10.1175/1520-0442(2002)015<0278:NCOCME>2.0.CO;2.

M. Fujiwara, F. Hasebe, M. Shiotani, N. Nishi, H. Vömel, y S. J. Oltmans, “Water vapor control at the tropopause by equatorial Kelvin waves observed over the Galápagos,” Geophys. Res. Lett., vol. 28, no. 16, pp. 3143–3146, Aug. 2001, doi: https://doi.org/10.1029/2001GL013310.

X. Song, G. J. Zhang, y J.-L. F. Li, “Evaluation of Microphysics Parameterization for Convective Clouds in the NCAR Community Atmosphere Model CAM5,” J. Clim., vol. 25, no. 24, pp. 8568–8590, 2012, doi: https://doi.org/10.1175/JCLI-D-11-00563.1.

A. B. Pezza y T. Ambrizzi, “Dynamical conditions and synoptic tracks associated with different types of cold surge over tropical South America,” Int. J. Climatol., vol. 25, no. 2, pp. 215–241, 2005, doi: https://doi.org/10.1002/joc.1080.

R. Basantes-Serrano et al., “Slight mass loss revealed by reanalyzing glacier mass-balance observations on Glaciar Antisana 15α (inner tropics) during the 1995–2012 period,” J. Glaciol., vol. 62, no. 231, pp. 124–136, 2016, doi: https://doi.org/10.1017/jog.2016.17.

S. J. Munchak, C. D. Kummerow, y G. Elsaesser, “Relationships between the Raindrop Size Distribution and Properties of the Environment and Clouds Inferred from TRMM,” J. Clim., vol. 25, no. 8, pp. 2963–2978, 2012, doi: https://doi.org/10.1175/JCLI-D-11-00274.1.

G. G. Schaber, “The surface of Io: Geologic units, morphology, and tectonics,” Icarus, vol. 43, no. 3, pp. 302–333, 1980, doi: https://doi.org/10.1016/0019-1035(80)90177-3.

S. Douté, R. Lopes, L. W. Kamp, R. Carlson, y B. Schmitt, “Dynamics and Evolution of SO2 Gas Condensation around Prometheus-like Volcanic Plumes on Io as Seen by the Near Infrared Mapping Spectrometer,” Icarus, vol. 158, no. 2, pp. 460–482, 2002, doi: https://doi.org/10.1006/icar.2002.6889.

C. Q. Kieu y D.-L. Zhang, “Genesis of Tropical Storm Eugene (2005) from Merging Vortices Associated with ITCZ Breakdowns. Part I: Observational and Modeling Analyses,” J. Atmos. Sci., vol. 65, no. 11, pp. 3419–3439, 2008, doi: https://doi.org/10.1175/2008JAS2605.1.

E. A. Wheeler, P. Baas, y L. Boucher, “Wood evolution: Baileyan trends and Functional traits in the fossil record,” IAWA J., vol. 40, no. 3, pp. 488–529, 2019, doi: https://doi.org/10.1163/22941932-40190230.

J. P. F. Fortuin et al., “Origin and transport of tropical cirrus clouds observed over Paramaribo, Suriname (5.8°N, 55.2°W),” J. Geophys. Res. Atmos., vol. 112, no. D9, May 2007, doi: https://doi.org/10.1029/2005JD006420.

P. Nowajewski, M. Rojas, P. Rojo, y S. Kimeswenger, “Atmospheric dynamics and habitability range in Earth-like aquaplanets obliquity simulations,” Icarus, vol. 305, pp. 84–90, 2018, doi: https://doi.org/10.1016/j.icarus.2018.01.002.

N. A. López Hernández, O. L. Palacios-Vélez, M. Anaya-Garduño, J. Chávez-Morales, J. E. Rubiños-Panta, y M. García-Carrillo, “Diseño de sistemas de captación del agua de lluvia: alternativa de abastecimiento hídrico,” Rev. Mex. Ciencias Agrícolas, vol. 8, no. 6, pp. 1433–1439, 2017, doi: https://doi.org/10.29312/remexca.v8i6.314.

I. R. Artunduaga Salas, “Principios básicos de ocurrencia de las heladas y su control.” Colombia, 1982.

J. M. Viñas, Conocer la Meteorología, Libros Sin. España: Alianza, 2019.

IDEAM-UNAL, La variabilidad climátoca y el cambio climático en Colombia, Universida. Colombia: Universidad Nacional, 2018.

M. Fernández, I. Barnatán, L. Spescha, R. Hurtado, y G. Murphy, “Caracterización de las heladas en la región pampeana y su variabilidad en los últimos 10 años,” Rev. la Fac. Agron., vol. 25, no. 1, p. 10, 2005.

R. A. García-León, E. F. Solano, y J. B. Pedrozo, “Design of portable traction mechanism for the deployment of the mobile gun sprinkler system for agricultural crops in rurals zones,” Prospectiva, Apr. 2019, doi: https://doi.org/10.15665/rp.v17i1.1864.

R. A. García-Léon, W. Jaimes-Gonzalez, L. D. Becerra, E. Flórez-Solano, M. Cabellos-Martínez, y D. Meneses-Torres, “Application of the QFD method to the design of a cocoa pulping machine,” Int. J. Syst. Assur. Eng. Manag., pp. 1–12, 2021, doi: https://doi.org/10.1007/s13198-021-01416-0.

Programa de las Naciones Unidas para el Desarrollo, “Objetivos de desarrollo sostenible.,” WebPage. [Online]. Available: www.co.undp.org/content/colombia/es/home/sustainable-development-goals.html.

K. E. Trenberth y J. T. Fasullo, “Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010,” J. Geophys. Res. Atmos., vol. 117, no. 17, 2012, doi: https://doi.org/10.1029/2012JD018020.

OJS System - Metabiblioteca |