Caracterización de los componentes funcionales de la harina de epicarpio de papaya (Carica papaya L) como fuente de pigmentos naturales

Characterization of functional components flour epicarp papaya (Carica papaya L) as a source of natural pigments

Contenido principal del artículo

Viviana Andrea Velasco Arango
John Edwin Sotelo Barbosa
Luis Eduardo Ordoñez Santos
José Igor Hleap Zapata
Resumen

La papaya (Carica papaya L) es una fruta rica en sustancias antioxidantes y fuente importante para la obtención de compuestos bioactivos. Su producción, a nivel mundial, para el año 2017, fue de 13,3 millones de toneladas. En su procesamiento industrial  se  obtiene  aproximadamente  entre  el  15  y  el  20%,  con  relación  al  peso  de  la  fruta,  de  cáscaras  o  epicarpio,  las cuales son susceptibles de ser aprovechadas con el fin de obtener compuestos orgánicos tales como carotenoides y polifenoles, entre otros, contribuyendo, además, a mitigar los efectos sobre el medio ambiente, ya que generalmente, estas cáscaras son arrojadas a los vertederos de residuos sólidos, generando serios problemas de contaminación ambiental. El objetivo de esta investigación fue caracterizar fisicoquímicamente los pigmentos carotenoides obtenidos del epicarpio de papaya. Se procesó una harina de epicarpio de papaya (HEP) y se determinó, tanto en ella como en el epicarpio en fresco, pH, acidez titulable, sólidos solubles, parámetros de color según el método CIELab, actividad de agua, contenido de humedad y materia seca. Igualmente, se determinó el contenido de carotenoides, la actividad antioxidante y el contenido de compuestos fenólicos. Los resultados mostraron valores altos para los parámetros fisicoquímicos. El contenido de compuestos carotenoides para las fracciones de β-caroteno, α-caroteno, β-criptoxantina, zeaxantina y licopeno osciló entre 8,587 y 4,070 mg/100g de epicarpio, siendo la de mayor valor la correspondiente a β-criptoxantina y la de menor valor la fracción de licopeno. La actividad antioxidante, expresada como inhibición del radical DPPH, arrojó un valor de 58,77 ± 3,038 IC50 mg/ml. El contenido de compuestos fenólicos medido en mg de ácido gálico equivalentes/g dio un resultado de 24,948 ± 0,728. Los datos arrojados permiten concluir que dicha harina puede ser utilizada como fuente de compuestos bioactivos y pigmentos naturales tanto en la industria alimenticia como en industrias técnicas y farmacéuticas.

Palabras clave

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias
Peterman, F. et al., “El consumo de frutas y verduras se asocia a menor mortalidad: 5 porciones al día es bueno, ¡pero 10 serían mejor!”, Revista Chilena de Nutrición, vol. 45, no. 2, pp. 183-185, 2018.

Altendorf, S. Major tropical fruits market review 2017. FAO, Ed. FAO, Roma. Italy. 2019. pp. 1-10.

Ali, A., Ong, M.K. and Forney, C.F. “Effect of ozone pre-conditioning on quality and antioxidant capacity of papaya fruit during ambient storage”, Food Chemistry, vol. 142, pp. 19-26, 2014.

Yanty, N.A. et al., “Physico-chemical characteristics of papaya (Carica papaya L) seed oil of the Hong Kong/Sekaki Variety”, Journal of Oleo Science, vol. 63, no. 9, pp. 885-892, 2014.

Paes, J., Reschke da Cunha, C. and Viotto, L.A. “Concentration of lycopene in the pulp of papaya (Carica papaya L) by ultrafiltration on a pilot scale”, Food and Bioproducts Processing, vol. 96, pp. 296-305, 2015.

AGRONET, Ministerio de Agricultura. Balance del sector hortofrutícola diciembre de 2017. Ministerio de Agricultura, Bogotá, Colombia, 2019.

Dorado, D.J., Hurtado, A.M. and Martínez-Correa, H.A. “Extracción supercrítica de aceite de semillas de papaya (Carica papaya): composición y propiedades fisicoquímicas”, Vitae Colombia, vol. 24, no. 2, pp. 35-45, 2017.

Zhang, W. et al., “Properties of soluble dietary fiber-polysaccharide from papaya peel obtained through alkaline or ultrasound assisted alkaline extraction”, Carbohydrate Polymers, vol. 172, pp. 102-112, 2017.

Bugge, M.M., Fevolden, A.M. and Kitkou, A. “Governance for system optimization and system change: The case of urban waste”, Research Policy, vol. 48, no. 4, pp. 1076-1090, 2019.

Calvache, J.N. et al. “Antioxidant characterization of new dietary fiber concentrates from papaya pulp and peel (Carica papaya L)”, Journal of Functional Foods, vol. 27, pp. 319-328, 2016.

Ordoñez-Santos, L.E. et al. “Concentración de carotenoides totales en residuos de frutas tropicales”, Producción + Limpia, vol. 9, no. 1, pp. 91-88, 2014.

Ordoñez-Santos, L.E. and Ledezma-Realpe, D.P. “Lycopene Concentration and physico-chemical properties of tropical fruits”, Food and Nutrition Sciences, vol. 4, no. 7, pp. 758-762, 2013.

Baria, B. et al. “Optimization of “green” extraction of carotenoids from mango pulp using split plot design and its characterization”, LWT, vol. 104, pp. 186-194, 2019.

Boukroufa, M., Boutekedjiret, C. and Chemat, F. “Development of a green procedure of citrus fruits waste processing to recover carotenoids”, Resource-Efficient Technologies, vol. 3, no. 3, pp. 252-262, 2017.

Pinzón-Zárate, L.X., Hleap-Zapata, J.I. and Ordoñez-Santos, L.E. “Análisis de los parámetros de color en salchiichas Frankfurt adicionadas con extracto oleoso de residuos de chontaduro (Bactris gasipaes)”, Información Tecnológica, vol. 26, no. 5, pp. 45-55, 2015.

NTC, Icontec Internacional. Fruit and Vegetable Products. Determination of pH – NTC 4592, Determination of Titrable Acidity - NTC 4623, Determination of Soluble Solids Content, Refractometric Method – NTC 4624 Instituto Colombiano de Normas Técnicas, Bogotá, Colombia, 1999.

AOAC 978.19, Official Methods of Analysis International, agricultural chemicals, contaminants, drug. 17th. Ed. Maryland. USA. 2000.

Martínez-Girón, J. Rodríguez-Rodríguez, X., Pinzón-Zárate, L.X. and Ordóñez-Santos, L.E. “Caracterización fisicoquímica de harina de residuos del fruto de chontaduro (Bactris gasipaes Kunth Arecaceae) obtenida por secado convectivo”, Corpoica Ciencia y Tecnología Agropecuaria, vol. 18, no. 3, pp. 599-613, 2017.

Singleton, V.L., Orthofer, R. and Reventós, R.M. “Analysis of total phenols and other oxidation substrates and antioxidants by means of Foli-Ciocalteu reagent”, Methods in Enzymology, vol. 299, pp. 152-178, 1999.

Teow, C.C., Troung, V.D., McFeeters, R.F., Thompson, R.L., Pecota, K.V. and Yencho, G.C. “Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colours”, Food Chemistry, vol. 103, no. 3, pp. 829-838, 2007.

Chaiwut, P., Pintathong, P. and Rawdkuen, S. “Extraction and three-phase partitioning behavior of proteases from papaya peels”, Process Biochemistry, vol. 45, no. 7, pp. 1172-1175, 2010.

Rinaldi, M.M., De Lima T.A. and Ramirez, D.P. “Caracterização física de frutos de mamão e química de cascas e sementes”, Boletim de Pesquisa e Desenvolvimento 263, Embrapa, Brasil, 2010. 17 p.

Mendy, T.K., Misran, A., Mahmud, T.M.M. and Ismail, S.I. “Application of Aloe vera coating delays ripening and extend the shelf life of papaya fruit”, Scientia Horticulturae, vol. 246, pp. 769-776, 2019.

Ali, A., Muda, M.T., Sijam, M. and Siddiqui, Y. “Effect of chitosan coatings on the physicochemical characteristics of Eksotika II papaya (Carica papaya L) fruit during cold storage”, Food Chemistry, vol. 124, pp. 620-626, 2011.

Albertini, S., Lai Reyes, A.E., Moreno, J., Sarriés, G.A. and Fillet, M.H. “Effect of chemical treatments on fresh-cut papaya”, Food Chemistry, vol. 190, pp. 1182-1189, 2016.

Serna-Cock, L., Torres-Leon, C. and Ayala-Aponte, A. “Evaluación de polvos alimentarios obtenidos de cáscaras de mango (Manguifera indica) como fuente de ingredientes funcionales”, Información Tecnológica, vol. 26, no. 2, pp. 41-50, 2015.

Fernández-López, J.E., Sendra, E., Sayas-Barberá, E., Navarro, C. and Pérez-Álvarez, J.A. “Physico-chemical and microbiological profiles of “salchichón” (Spanish dry-fermented sausage) enriched with orange fiber”, Meat Science, vol. 80, no. 2, pp. 410-417, 2008.

Paakki, M., Aaltojãrvi, I., Sandell, M. and Hopia, A. “The importance of the visual aesthetics of colours in food at a workday lunch”, International Journal of Gastronomy and Food Science, vol. 16, pp. 100131, 2019.

Martínez-Girón, J. and Ordoñez-Santos, L.E. “Efecto del procesamiento térmico sobre el color superficial del pimentón rojo (Capsicum annum) variedad “Nataly””, Biotecnología en el Sector Agropecuario y Agroindustrial, vol. 13, no. 2, pp. 104-113, 2015.

Santamaría, F., Sauri, E., Espadas, G., Díaz, R., Larqué, A. and Santamaría, J.M. “Postharvest ripening and maturity indices for Maradol papaya”, Interciencia, vol. 34, no. 8, pp. 583-588, 2009.

Molina-Hernández, J.B., Martínez-Correa, H.A. and Andrade-Mahecha, M.M. “Potencial agroindustrial del epicarpio de maracuyá como ingrediente alimenticio activo”, Información Tecnológica, vol. 30, no. 2, pp. 245-256, 2019.

Repo de Carrasco, R. and Encina, C.R. “determinación de la capacidad antioxidante y compuestos bioactivos de frutas nativas peruanas”, Revista de la Sociedad Química del Perú, vol. 74, no. 2, pp. 108-124, 2008.

Noronha, K.A., Praia, D., Pereira, A.P., Zerlotti, A. and Campos, R. “Peels of tucumã (Astrocaryum vulgare) and peach palm (Bactris gasipaes) are by-products classified as very high carotenoid sources”, Food Chemistry, vol. 272, pp. 216-221, 2019.

Dumas, Y., Dadomo, M., Di Lucca, G. and Grolier, P. “Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes”, Journal of the Science of Food and Agriculture, vol. 83, no. 5, pp. 369-382, 2003.

Eleojo, A., Amoo, S. and Kudanga, T. “phenolic compound profile and biological activities of Southern African Opuntia ficus-indica fruit pulp and peels”, LWT, vol. 11, pp. 337-344, 2019.

Faten, A.E. and Rehab, M.A. “Antioxidant and anticancer activities of different constituents extracted from Egyptian prickly pear cactus (Opuntia ficus-indica) peel”, Biochemistry & Analytical Biochemistry, vol. 3, no. 2, pp. 1-9, 2014.

Flores, J.D., Niño, G., Báez, J.G., García-Alanis, K., Gallardo, C. and Castillo, S.L. “Evaluación antimicrobiana, antioxidante y composición nutricia de subproductos bioprocesados de Carica papaya L”, Investigación y Desarrollo en Ciencia y Tecnología de Alimentos, vol. 3, pp. 145-150, 2018.

Reyes-Munguía, A. Alanís-Campos, L.G., Vásquez-Elorza, A. and Carrillo-Inungaray, M.A. “Propiedades antioxidantes de extractos frescos y secos de cáscara de C. papaya L”, Revista de Ciencias de la Salud, vol. 3, no. 6, pp. 44-49, 2016.

Raja, K.S., Taip, F.S., Zakuan, M.M. and Islam M.R. “Effect of pre-treatment and different drying Methods on the physicochemical properties of Carica papaya L leaf powder”, Journal of the Saudi Society of Agricultural Sciences, vol. 18, no. 2, pp. 150-156, 2019.

Morais, D.R., Rotta, E.M., Sargi, S.C., Schmidt, E.M., Bonafe, E.G., Eberlin, M.N., Sawaya, A. and Visentainer, J.V. “Antioxidant activity phenolics and UPLC-ESI(-)-MS of extracts from different tropical fruits parts and processed peels”, Food Research International, vol. 77, no. 3, pp. 392-399, 2015.

Molina-Quijada, D.M.A., Medina-Juárez, L.A., González-Aguilar, G.A., Robles-Sánchez, R.M. and Gámez-Mesa, N. “Compuestos fenólicos y actividad antioxidante de cáscara de uva (Vitis vinífera L) de mesa cultivada en el noroeste de México”, CyTA Journal of Food, vol. 8, no. 1, pp. 57-63, 2010.

Vasco, C., Ruales, J. and Kamal-Eldin, A. “Total phenolic compounds and antioxidant capacities of major fruits from Ecuador”, Food Chemistry, vol. 111, no. 4, pp. 816-823, 2003.
Sistema OJS - Metabiblioteca |