Eliminación de refrigerantes de alto GWP en sistemas de refrigeración: Estado del proceso en Colombia
Phase-out of high GWP refrigerants in refrigeration systems: Status of process in Colombia
Contenido principal del artículo
Este articulo pretende llamar la atención del público en general sobre los cambios que tendrán los sistemas de refrigeración y aire acondicionado en los fluidos refrigerantes HFCs, usados actualmente. HFCs son alternativas comúnmente usadas para sustancias que destruyen la capa de ozono. Si bien no son sustancias que destruyen la capa de ozono, los HFCs son gases de efecto invernadero, los cuales pueden tener muy altos potenciales de calentamiento global (GWP). Así, más de 150 países firmaron el acuerdo de Kigali en 2016, el cual estableció el fin de la producción y consumo de los HFCs. Este trabajo describe brevemente la problemática que rodea os HFCs e resume los fluidos considerados como alternativas para los principales HFCs usados en los sistemas de refrigeración, presentados en la literatura científica. Adicionalmente, el panorama y la actual situación del proceso de retirada de los HFC en Colombia es analizados.
Descargas
Detalles del artículo
G. J. M. Velders, S. Solomon, and J. S. Daniel, “Growth of climate change commitments from HFC banks and emissions,” Atmos. Chem. Phys., vol. 14, no. 9, pp. 4563–4572, May 2014.
UNFCCC, “The Kigali Amendment to the Montreal Protocol: HFC Phase-down,” 2016.
Y. Xu, D. Zaelke, G. J. M. Velders, and V. Ramanathan, “The role of HFCs in mitigating 21st century climate change,” Atmos. Chem. Phys., vol. 13, no. 12, pp. 6083–6089, Jun. 2013.
CCACoalition, “Hydrofluorocarbons (HFC),” 2010.
A. Mota-Babiloni, J. Navarro-Esbrí, Á. Barragán-Cervera, F. Molés, and B. Peris, “Analysis based on EU Regulation No 517/2014 of new HFC/HFO mixtures as alternatives of high GWP refrigerants in refrigeration and HVAC systems,” Int. J. Refrig., vol. 52, pp. 21–31, 2015.
D. Di Battista and R. Cipollone, “High efficiency air conditioning model based analysis for the automotive sector,” Int. J. Refrig., vol. 64, pp. 108–122, 2016.
V. Oruç, A. G. Devecioğlu, and S. Ender, “Improvement of energy parameters using R442A and R453A in a refrigeration system operating with R404A,” Appl. Therm. Eng., vol. 129, pp. 243–249, Jan. 2018.
A. Alabdulkarem, R. Eldeeb, Y. Hwang, V. Aute, and R. Radermacher, “Testing, simulation and soft-optimization of R410A low-GWP alternatives in heat pump system,” Int. J. Refrig., vol. 60, pp. 106–117, 2015.
N. Abas, R. Nawaz, and N. Khan, “Parametric quantification of low GWP refrigerant for thermosyphon driven solar water heating system,” Procedia Comput. Sci., vol. 52, no. 1, pp. 804–811, 2015.
R. Llopis, R. Cabello, D. Sánchez, and E. Torrella, “Energy improvements of CO2 transcritical refrigeration cycles using dedicated mechanical subcooling,” Int. J. Refrig., vol. 55, pp. 129–141, Jul. 2015.
P. Maina and Z. Huan, “A review of carbon dioxide as a refrigerant in refrigeration technology,” S. Afr. J. Sci., vol. 111, no. 9/10, Sep. 2015.
K. Nawaz, B. Shen, A. Elatar, V. Baxter, and O. Abdelaziz, “R290 (propane) and R600a (isobutane) as natural refrigerants for residential heat pump water heaters,” Appl. Therm. Eng., vol. 127, pp. 870–883, Dec. 2017.
K. A. Alkhaledi and K. Means, “A study on the use of propane (R-290) in vending machines as a substitute for R-134a to minimise the global warming potential,” Int. J. Glob. Warm., vol. 14, no. 1, p. 131, 2018.
K. W. Kim et al., “Thermodynamic properties of HFO-1234yf (2,3,3,3- tetrafluoropropene),” Int. J. Refrig., vol. 35, no. 1, pp. 24–30, Jun. 2014.
IPCC, “Climate Change 2013: The Physical Science Basis,” 2013.
Y. ZHAO, J. CHEN, B. XU, and B. HE, “Performance of R-1234Yf in Mobile Air Conditioning System Under Different Heat Load Conditions,” Int. J. Air- Conditioning Refrig., vol. 20, no. 03, p. 1250016, 2012.
Z. Qi, “Performance improvement potentials of R1234yf mobile air conditioning system,” Int. J. Refrig., vol. 58, pp. 35–40, 2015.
Z. Meng, H. Zhang, M. Lei, Y. Qin, and J. Qiu, “Performance of low GWP R1234yf/R134a mixture as a replacement for R134a in automotive air conditioning systems,” Int. J. Heat Mass Transf., vol. 116, pp. 362–370, 2018.
A. Mota-Babiloni, J. Navarro-Esbrí, F. Molés, Á. B. Cervera, B. Peris, and G. Verdú, “A review of refrigerant R1234ze(E) recent investigations,” Appl. Therm. Eng., vol. 95, pp. 211–222, Feb. 2016.
M. O. McLinden, A. F. Kazakov, J. Steven Brown, and P. A. Domanski, “A thermodynamic analysis of refrigerants: Possibilities and tradeoffs for Low-GWP refrigerants,” Int. J. Refrig., vol. 38, no. 1, pp. 80–92, 2014.
P. A. Domanski, R. Brignoli, J. S. Brown, A. F. Kazakov, and M. O. McLinden, “Low-GWP refrigerants for medium and high- pressure applications,” Int. J. Refrig., vol. 84, pp. 198–209, 2017.
B. O. Bolaji, “Experimental study of R152a and R32 to replace R134a in a domestic refrigerator,” Energy, vol. 35, no. 9, pp. 3793–3798, Sep. 2010.
A. Mota-Babiloni, J. Navarro-Esbrí, P. Makhnatch, and F. Molés, “Refrigerant R32 as lower GWP working fluid in residential air conditioning systems in Europe and the USA,” Renew. Sustain. Energy Rev., vol. 80, no. February, pp. 1031–1042, 2017.
O. Abdelaziz et al., “Alternative Refrigerant Evaluation for High-Ambient- Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners,” 2015.
O. Abdelaziz et al., “Alternative Refrigerant Evaluation for Environments: R-22 and R-410A Alternatives for Rooftop Air Conditioners,” 2016.
M. de A. de Colombia, “Boletin Ozono,” 2010.
UNDP, CCAC, Colombia. Colombia HFC Inventory Report. 2014.
Paul Ashford, UNDP, CCAC, Colombia. Colombia HFC Emissions Assessment. 2015.
Omarly Acevedo. Pautas para el uso sostenible de los refrigerantes halogenados en sistemas de refrigeración y aire acondicionado. Boletín Ozono. No 38. 2015.