Fabricación de espumas de SiC de bajo costo a partir de azúcar y plantillas poliméricas recicladas

Fabrication of low-cost SiC foams from sugar and recycled polymeric templates

Contenido principal del artículo

Resumen

Las espumas cerámicas macroporosas son utilizadas en diferentes campos debido a sus propiedades únicas, que incluyen: baja densidad, baja conductividad térmica, alta permeabilidad, estabilidad a altas temperaturas y alta resistencia al ataque químico. Las espumas de carburo de silicio (SiC) altamente porosas son materiales de gran interés en diferentes aplicaciones industriales como absorción, soportes catalíticos, aislamiento térmico, entre otros, debido a su inercia química, gran área superficial, baja resistencia al flujo, baja caída de presión, así como alta resistencia a la temperatura y a la corrosión. En este trabajo, se fabricaron espumas de SiC altamente porosas mediante una técnica de réplica en plantilla, utilizando espumas poliméricas recicladas como plantillas de sacrificio. Como precursor, se usó una resina a base de sacarosa con contenido de sílice en polvo. Las plantillas poliméricas se impregnaron, seguido de tratamiento térmico a 1500 ° C bajo atmósfera inerte. El efecto de la relación de masa C/SiO2 (1.0-1.75) en el precursor y el uso de alúmina (0.5 - 2.5 % p/v) como aditivo de sinterización se evaluaron en términos de la morfología de las espumas resultantes, así como del rendimiento de SiC.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias

Gopi, S., Pius, A., & Thomas, S. (2018). Synthesis, microstructure, and properties of high-strength. Fundamental Biomaterials: Ceramics, 265.

Luyten, J., Mullens, S., Cooymans, J., De Wilde, A. M., Thijs, I., & Kemps, R. (2009). Different methods to synthesize ceramic foams. Journal of the European Ceramic Society, 29(5), 829–832. https://doi.org/10.1016/j.jeurceramsoc.2008.07.039.

Eom, J. H., Kim, Y. W., & Raju, S. (2013). Processing and properties of macroporous silicon carbide ceramics: A review. Journal of Asian Ceramic Societies, 1(3), 220–242. https://doi.org/10.1016/j.jascer.2013.07.003.

Gómez-Gómez, A., Moyano, J. J., Román-Manso, B., Belmonte, M., Miranzo, P., & Osendi, M. I. (2019). Highly-porous hierarchical SiC structures obtained by filament printing and partial sintering. Journal of the European Ceramic Society, 39(4), 688–695. https://doi.org/10.1016/j.jeurceramsoc.2018.12.034.

Jean, G., Sciamanna, V., Demuynck, M., Cambier, F., & Gonon, M. (2014). Macroporous ceramics: Novel route using partial sintering of alumina-powder agglomerates obtained by spray-drying. Ceramics International, 40(7 PART A), 10197–10203. https://doi.org/10.1016/j.ceramint.2014.02.089.

Hooshmand, S., Nordin, J., & Akhtar, F. (2019). Porous alumina ceramics by gel casting: Effect of type of sacrificial template on the properties. International Journal of Ceramic Engineering & Science, 1(2), 77–84. https://doi.org/10.1002/ces2.10013.

Hedayat, N., Du, Y., & Ilkhani, H. (2017). Review on fabrication techniques for porous electrodes of solid oxide fuel cells by sacrificial template methods. Renewable and Sustainable Energy Reviews, 77(April), 1221–1239. https://doi.org/10.1016/j.rser.2017.03.095.

Jana, D. C., Sundararajan, G., & Chattopadhyay, K. (2017). Effect of Porosity on Structure, Young’s Modulus, and Thermal Conductivity of SiC Foams by Direct Foaming and Gelcasting. Journal of the American Ceramic Society, 100(1), 312–322. https://doi.org/10.1111/jace.14544.

Du, Z., Yao, D., Xia, Y., Zuo, K., Yin, J., Liang, H., & Zeng, Y. P. (2019). The high porosity silicon nitride foams prepared by the direct foaming method. Ceramics International, 45(2), 2124–2130. https://doi.org/10.1016/j.ceramint.2018.10.118.

Song, I. H., Ha, J. H., Park, M. J., Kim, H. D., & Kim, Y. W. (2012). Effects of silicon particle size on microstructure and permeability of silicon-bonded SiC ceramics. Journal of the Ceramic Society of Japan, 120(1405), 370–374. https://doi.org/10.2109/jcersj2.120.370.

Kovářík, T., Křenek, T., Rieger, D., Pola, M., Říha, J., Svoboda, M., … Kadlec, J. (2017). Synthesis of open-cell ceramic foam derived from geopolymer precursor via replica technique. Materials Letters, 209, 497–500. https://doi.org/10.1016/j.matlet.2017.08.081.

Krawiec, P., & Kaskel, S. (2006). Thermal stability of high surface area silicon carbide materials. Journal of Solid State Chemistry, 179(8), 2281–2289. https://doi.org/10.1016/j.jssc.2006.02.034.

Fey, T., Betke, U., Rannabauer, S., & Scheffler, M. (2017). Reticulated Replica Ceramic Foams: Processing, Functionalization, and Characterization. Advanced Engineering Materials, 19(10), 1–15. https://doi.org/10.1002/adem.201700369.

Duong-Viet, C., Ba, H., El-Berrichi, Z., Nhut, J. M., Ledoux, M. J., Liu, Y., & Pham-Huu, C. (2016). Silicon carbide foam as a porous support platform for catalytic applications. New Journal of Chemistry, 40(5), 4285–4299. https://doi.org/10.1039/c5nj02847g.

Durif, C., Wynn, M., Balestrat, M., Franchin, G., Kim, Y.-W., Leriche, A., … Bernard, S. (2019). Open-celled silicon carbide foams with high porosity from boron-modified polycarbosilanes. Journal of the European Ceramic Society, 39(16), 5114–5122. https://doi.org/10.1016/j.jeurceramsoc.2019.08.012.

Kim, Y. W., Eom, J. H., Wang, C., & Park, C. B. (2008). Processing of porous silicon carbide ceramics from carbon-filled polysiloxane by extrusion and carbothermal reduction. Journal of the American Ceramic Society, 91(4), 1361–1364. https://doi.org/10.1111/j.1551-2916.2008.02280.x.

Mouazer, R., Mullens, S., Thijs, I., Luvten, J., & Buekenhoudt, A. (2005). Silicon carbide foams by polyurethane replica technique. Advanced Engineering Materials, 7(12), 1124–1128. https://doi.org/10.1002/adem.200500163.

Nangrejo, M. R., & Edirisinghe, M. J. (2002). Porosity and strength of silicon carbide foams prepared using preceramic polymers. Journal of Porous Materials, 9(2), 131–140. https://doi.org/10.1023/A:1020834509443.

Vix-Guterl, C., & Ehrburger, P. (1997). Effect of the properties of a carbon substrate on its reaction with silica for silicon carbide formation. Carbon, 35(10-11), 1587-1592.

Filsinger, D. H., & Bourrie, D. B. (1990). Silica to Silicon: Key Carbothermic Reactions and Kinetics. Journal of the American Ceramic Society, 73(6), 1726–1732. https://doi.org/10.1111/j.1151-2916.1990.tb09820.x.

Shcherban, N., Filonenko, S., Sergiienko, S., Yaremov, P., Skoryk, M., Ilyin, V., & Murzin, D. (2018). Morphological features of porous silicon carbide obtained via a carbothermal method. International Journal of Applied Ceramic Technology, 15(1), 36–41. https://doi.org/10.1111/ijac.12757.

Qian, J., Wang, J., & Jin, Z. (2004). Preparation of biomorphic SiC ceramic by carbothermal reduction of oak wood charcoal. Materials Science and Engineering A, 371(1–2), 229–235. https://doi.org/10.1016/j.msea.2003.11.051.

Schmidt, W. R., Doremus, R. H., Interrante, L. V., Trout, T. K., Marchetti, P. S., & Maciel, G. E. (1991). Pyrolysis Chemistry of an Organometallic Precursor to Silicon Carbide. Chemistry of Materials, 3(2), 257–267. https://doi.org/10.1021/cm00014a011.

Giachello, A., Martinengo, P. C., Tommasini, G., & Popper, P. (1979). Sintering of silicon nitride in a powder bed. Journal of Materials Science, 14(12), 2825–2830. https://doi.org/10.1007/BF00611461.

Negita, K. (1986). Effective Sintering Aids for Silicon Carbide Ceramics: Reactivities of Silicon Carbide with Various Additives. Journal of the American Ceramic Society, 69(12), C‐308-C‐310. https://doi.org/10.1111/j.1151-2916.1986.tb07398.x.

Zhang, X. F., Yang, Q., & De Jonghe, L. C. (2003). Microstructure development in hot-pressed silicon carbide: Effects of aluminum, boron, and carbon additives. Acta Materialia, 51(13), 3849–3860. https://doi.org/10.1016/S1359-6454(03)00209-X.