Concrete slump with partial replacement of cementitious material by fly ash and hydrated lime

Asentamiento en concretos con reemplazo parcial de material cementante por ceniza volante y cal hidratada

Resumen

It was determined the settlement, with the help of the Abrams Cone, of 3 mixtures of conventional concrete with weight differences in the incorporated cementitious material whose variation contemplates the 300, 350 and 400 Kg/m3 for each mixture. The classification of the materials used for the elaboration of the concrete mixtures was made by means of the standardized methods in the Colombian Technical Norms and the Tests of the National Institute of Roads. Based on the conventional mixtures elaborated, an equal number of experimental mixtures were carried out that counted as a common characteristic the replacement of 40% of the weight of the cementitious material by 70% of fly ash, residual material of the Termoelectrica Termotasajero located in the municipality of San Cayetano Cúcuta Colombia and 30% of hydrated lime coming from the Municipality of Malaga in the department of Santander of the same country. The experimental mixtures, in addition to their variable in the weight of the incorporated cementitious material, had an additional variable which consisted of the % of water in relation to the weight of the cementitious material with which its reveniment was evaluated with the inclusion of 60, 65 and 70% of the weight of the material by water. After a comparative analysis of the data from the mixtures, the viability of including fly ash and hydrated lime in mixtures that include 350 and 400 kg of cementitious material per m3, together with 65 and 70% of water in relation to the weight of the same material, was concluded.

Citas

J. Khalaf and Z. Huang, “The bond behaviour of reinforced concrete members at elevated temperatures,” Fire Saf. J., vol. 103, no. August 2017, pp. 19–33, 2019.

C. Zheng, C. Lou, G. Du, X. Li, Z. Liu, and L. Li, “Mechanical properties of recycled concrete with demolished waste concrete aggregate and clay brick aggregate,” Results Phys., vol. 9, no. April, pp. 1317–1322, 2018.

N. K. Bui, T. Satomi, and H. Takahashi, “Improvement of mechanical properties of recycled aggregate concrete basing on a new combination method between recycled aggregate and natural aggregate,” Constr. Build. Mater., vol. 148, pp. 376–385, 2017.

C. Zhou and Z. Chen, “Mechanical properties of recycled concrete made with different types of coarse aggregate,” Constr. Build. Mater., vol. 134, pp. 497–506, 2017.

A. Gholampour and T. Ozbakkaloglu, “Time-dependent and long-term mechanical properties of concretes incorporating different grades of coarse recycled concrete aggregates,” Eng. Struct., vol. 157, no. December 2017, pp. 224–234, 2018.

N. Tošić, S. Marinković, T. Dašić, and M. Stanić, “Multicriteria optimization of natural and recycled aggregate concrete for structural use,” J. Clean. Prod., vol. 87, no. 1, pp. 766–776, 2015.

O. Hurtado-Figueroa and J. Cardenas-gutierrez, “Substitution of Natural Stony Material Aggregates in Conventional 17 . 5 Mpa Non-Structural Concrete Mixtures by Means of Percentage Addition of Hospital Solid Waste,” Contemp. Eng. Sci., vol. 11, no. 100, pp. 4995–5004, 2018.

Hurtado-Figueroa, O; Cardenas-Gutierrez, JA “Resistance to compression of conventional concrete alleviated through partial substitution of coarse aggregate for expanded polystyrene Resistance to compression of conventional concrete alleviated through partial substitution of coarse aggregate for expa,” IOP Conf. Ser. J. Phys., no. 1126, p. 012040, 2018.

Patiño-Murillo, JA; Gutierrez-Sandoval, YC; Leal-Santafe, JI; Castro-Maldonado, JJ; Hurtado-Figueroa, O “Estudio Del Comportamiento de Muestras de Mortero Natural Sometidas a Esfuerzo de Compresión Performance of Natural Mortar Samples Subject to Compression Strength Tests,” Lámpsakos, no. 20, pp. 22–28, 2018.

Q. Peng, L. Wang, and Q. Lu, “Influence of recycled coarse aggregate replacement percentage on fatigue performance of recycled aggregate concrete,” Constr. Build. Mater., vol. 169, pp. 347–353, 2018.

R. Howes, M. N. s. Hadi, and W. South, “Concrete strength reduction due to over compaction,” Constr. Build. Mater., vol. 197, pp. 725–733, 2019.

O. Damdelen, “Investigation of 30% recycled coarse aggregate content in sustainable concrete mixes,” Constr. Build. Mater., vol. 184, pp. 408–418, 2018.

Hurtado-Figueroa, O; Cardenas-Gutierrez, JA and Rojas-Suarez, JP, “Determination of the quality of coarse aggregates for the elaboration of concrete mixes from 3 water sources in the City of Cucuta-Colombia Determination of the quality of coarse aggregates for the elaboration of concrete mixes from 3 water sources in the,” IOP Conf. Ser. J. Phys., no. 1126, p. 012041, 2018.

Hurtado-Figueroa, O; Cardenas-Gutierres, JA; Prada-Botia G, “Verification of compression resistance between a conventional concrete and its addition of 5 , 10 and 15 % in volume of fly ash replacing fine aggregate Verification of compression resistance between a conventional concrete and its addition of 5 , 10 and,” IOP Conf. Ser. J. Phys., no. 1126, p. 012037, 2018.

Instituto Colombiano de Normas Tecnicas y Certificacion (ICONTEC) 1966 Cemento pórtland. clasificación y nomenclatura. NTC30 (Colombia: Instituto Colombiano de Normas Tecnicas y Certificacion)

Instituto Colombiano de Normas Tecnicas y Certificacion (ICONTEC) 1982 Ingeniería civil y arquitectura. Cemento pórtland. especificaciones químicas. NTC321 (Colombia: Instituto Colombiano de Normas Tecnicas y Certificacion)

Instituto Colombiano de Normas Tecnicas y Certificacion (ICONTEC) 1982 Ingeniería civil y arquitectura. Cemento Pórtland. especificaciones físicas y mecánicas NTC121 (Colombia: Instituto Colombiano de Normas Tecnicas y Certificacion)

Instituto Colombiano de Normas Tecnicas y Certificacion (ICONTEC) 2007 Concretos. Método de ensayo para el analisis por tamizado de los agregados finos y gruesos. NTC77 (Colombia: Instituto Colombiano de Normas Tecnicas y Certificacion)

Instituto Colombiano de Normas Tecnicas y Certificacion (ICONTEC) 1995 Ingeniería civil y arquitectura. Determinación de la masa unitaria y los vacíos entre partículas de agregados. NTC92 (Colombia: Instituto Colombiano de Normas Tecnicas y Certificacion)

Ensayos del Instituto Nacional de Vias (INV E) 2007 Indice de aplanamiento y de alargamientode los agregados para carreteras. INV E230 (Colombia: Instituto Nacional de Vias)

Instituto Colombiano de Normas Tecnicas y Certificacion (ICONTEC) 1995 Ingeniería civil y arquitectura. Método de ensayo para determinar ladensidad y la absorción del agregado grueso. NTC176 (Colombia: Instituto Colombiano de Normas Tecnicas y Certificacion)

Instituto Colombiano de Normas Tecnicas y Certificacion (ICONTEC) 1995 Ingeniería civil y arquitectura. Determinación de la resistencia al desgaste de agregados gruesos hasta de 37,5 mm, utilizando la máquina de los ángeles. NTC98 (Colombia: Instituto Colombiano de Normas Tecnicas y Certificacion)

Instituto Colombiano de Normas Tecnicas y Certificacion (ICONTEC) 1995 Ingeniería civil y arquitectura. Método para determinar la densidad y la absorción del agregado fino. NTC237 (Colombia: Instituto Colombiano de Normas Tecnicas y Certificacion)

Instituto Colombiano de Normas Tecnicas y Certificacion (ICONTEC) 2004 Cal hidratada para mampostería. NTC4019 (Colombia: Instituto Colombiano de Normas Tecnicas y Certificacion)

Instituto Colombiano de Normas Tecnicas y Certificacion (ICONTEC) 1995 Concretos. Agua para la elaboración de concreto. NTC3459 (Colombia: Instituto Colombiano de Normas Tecnicas y Certificacion)

Instituto Colombiano de Normas Tecnicas y Certificacion (ICONTEC) 1992 Ingeniería civil y arquitectura. Método de ensayo para determinar el asentamiento del concreto. NTC396 (Colombia: Instituto Colombiano de Normas Tecnicas y Certificacion)

Cómo citar
Hurtado-Figueroa, O., Bonilla-Granados, C. A., & Cardenas-Gutierrez, J. A. (2020). Concrete slump with partial replacement of cementitious material by fly ash and hydrated lime: Asentamiento en concretos con reemplazo parcial de material cementante por ceniza volante y cal hidratada. Respuestas, 25(S2), 46-52. Recuperado a partir de https://revistas.ufps.edu.co/index.php/respuestas/article/view/2301

Descargas

La descarga de datos todavía no está disponible.
Publicado
2020-01-01
Sección
Artículos de Investigación