Análisis multicriterio para la selección de tecnologías avanzadas de oxidación en el tratamiento de contaminantes emergentes

Palabras clave: Procesos avanzados de oxidación, Análisis multicriterio, Aguas Residuales, Contaminantes emergentes, Compuestos farmacéuticos

Resumen

A pesar de que existe información técnica sobre la eficiencia de las tecnologías avanzadas de oxidación (TAOs) a nivel de laboratorio, en algunos casos a nivel piloto y pocos a gran escala, no es fácil hacer una selección de la tecnología más apropiada para un efluente en particular, puesto que la selección de la tecnología depende de las características del agua contaminada. A través de la aplicación de la técnica de análisis multicriterio, este artículo propone una escala de TAOs para el tratamiento complementario de aguas contaminadas con CE. Las alternativas elegidas fueron  las tecnologías con aplicación de peróxido (H2O2),  Ozono (O3) y procesos Fenton (Fe/H2O2), los criterios de evaluación fueron consumo de energía eléctrica (EEO, por sus siglas en inglés) nivel de madurez tecnológica, complejidad del diseño/operación y costo de operación.  La tecnología avanzada de oxidación más recomendada por el AHP es el ozono y el péroxido/UV con una diferencia de 8.6% en la frecuencia en la evaluación de los criterios. Para la metodología AHP-TOPSIS, el peróxido/UV es la tecnología clave sobre el ozono con una diferencia de 31,4 % en la frecuencia de la selección.

Referencias bibliográficas

M. A. C. Lozano and D. C. M. Arias, “Residuos de fármacos en alimentos de origen animal: panorama actual en Colombia,” Revista Colombiana de Ciencias Pecuarias, vol. 21, no. 1, pp. 121–135, 2008.

J. C. G. Sousa, A. R. Ribeiro, M. O. Barbosa, M. F. R. Pereira, and A. M. T. Silva, “A review on environmental monitoring of water organic pollutants identified by EU guidelines,” Journal of Hazardous Materials, vol. 344, pp. 146–162, Feb. 2018, doi: 10.1016/J.JHAZMAT.2017.09.058.

M. Roccamante, I. Salmerón, A. Ruiz, I. Oller, and S. Malato, “New approaches to solar Advanced Oxidation Processes for elimination of priority substances based on electrooxidation and ozonation at pilot plant scale,” Catalysis Today, Apr. 2019, doi: 10.1016/J.CATTOD.2019.04.014.

S. Sudhakaran, S. K. Maeng, and G. Amy, “Hybridization of natural systems with advanced treatment processes for organic micropollutant removals: New concepts in multi-barrier treatment,” Chemosphere, vol. 92, no. 6, pp. 731–737, 2013, doi: 10.1016/j.chemosphere.2013.04.021.

N. N. Mahamuni and Y. G. Adewuyi, “Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation,” Ultrasonics Sonochemistry, vol. 17, no. 6, pp. 990–1003, 2010, doi: 10.1016/j.ultsonch.2009.09.005.

P. Sathishkumar, R. A. A. Meena, T. Palanisami, V. Ashokkumar, T. Palvannan, and F. L. Gu, “Occurrence, interactive effects and ecological risk of diclofenac in environmental compartments and biota - a review,” Science of The Total Environment, vol. 698, p. 134057, Jan. 2020, doi: 10.1016/J.SCITOTENV.2019.134057.

S. A. Fast, V. G. Gude, D. D. Truax, J. Martin, and B. S. Magbanua, “A Critical Evaluation of Advanced Oxidation Processes for Emerging Contaminants Removal,” Environmental Processes, vol. 4, no. 1, pp. 283–302, 2017, doi: 10.1007/s40710-017-0207-1.

X. T. Bui, T. P. T. Vo, H. H. Ngo, W. S. Guo, and T. T. Nguyen, “Multicriteria assessment of advanced treatment technologies for micropollutants removal at large-scale applications,” Science of the Total Environment, vol. 563–564, pp. 1050–1067, 2016, doi: 10.1016/j.scitotenv.2016.04.191.

A. A. Zorpas and A. Saranti, “Multi-criteria analysis of sustainable environmental clean technologies for the treatment of winery’s wastewater,” International Journal of Global Environmental Issues, vol. 15, no. 1/2, p. 151, 2016, doi: 10.1504/IJGENVI.2016.074359.

S. Sudhakaran, S. Lattemann, and G. L. Amy, “Appropriate drinking water treatment processes for organic micropollutants removal based on experimental and model studies - A multi-criteria analysis study,” Science of the Total Environment, vol. 442, pp. 478–488, 2013, doi: 10.1016/j.scitotenv.2012.09.076.

Y. Luo et al., “A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment,” Science of the Total Environment, vol. 473–474, pp. 619–641, 2014, doi: 10.1016/j.scitotenv.2013.12.065.

C. Teodosiu, A.-F. Gilca, G. Barjoveanu, and S. Fiore, “Emerging pollutants removal through advanced drinking water treatment: A review on processes and environmental performances assessment,” Journal of Cleaner Production, vol. 197, pp. 1210–1221, 2018, doi: 10.1016/j.jclepro.2018.06.247.

X. L. Meng, H. Zhu, and L. H. Yu, Screening method of priority pollutants in surface water source emergencies, vol. 1010–1012. 2014.

X. L. Meng, J. H. Qu, and L. H. Yu, Study on the assessment method of wastewater treatment technologies based on comprehensive scoring method, vol. 788. 2013.

J. Osorio and J. Orejuela, “El proceso de análisis jerárquico y la toma de decisiones multicriterio,” Red de Revistas Científicas de América Latina, el Caribe, España y Portugal, vol. XIV, no. 39, pp. 247–252, 2008, doi: 84920503044.

P. C. Manyoma-Velásquez, M. A. Pardo-Colorado, and P. Torres-Lozada, “Localización de depósitos internos para residuos sólidos hospitalarios utilizando técnicas multicriterio,” Ingenieria y Universidad, vol. 17, no. 2, pp. 443–461, 2013.

I. Sirés and E. Brillas, “Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review,” Environment International. 2012, doi: 10.1016/j.envint.2011.07.012.

L. Rizzo et al., “Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater,” Science of The Total Environment, vol. 655, pp. 986–1008, Mar. 2019, doi: 10.1016/J.SCITOTENV.2018.11.265.

V. Vaiano, O. Sacco, and D. Sannino, “Electric energy saving in photocatalytic removal of crystal violet dye through the simultaneous use of long-persistent blue phosphors, nitrogen-doped TiO2 and UV-light emitting diodes,” Journal of Cleaner Production, vol. 210, pp. 1015–1021, Feb. 2019, doi: 10.1016/J.JCLEPRO.2018.11.017.

A. Durán, J. M. Monteagudo, and I. San Martín, “Operation costs of the solar photo-catalytic degradation of pharmaceuticals in water: A mini-review,” Chemosphere, vol. 211, pp. 482–488, Nov. 2018, doi: 10.1016/J.CHEMOSPHERE.2018.07.170.

A. Durán, J. M. Monteagudo, and I. San Martín, “Photocatalytic treatment of an industrial effluent using artificial and solar UV radiation: An operational cost study on a pilot plant scale,” Journal of Environmental Management, vol. 98, pp. 1–4, May 2012, doi: 10.1016/J.JENVMAN.2011.12.007.

M. Bagheri and M. Mohseni, “Impact of hydrodynamics on pollutant degradation and energy efficiency of VUV/UV and H2O2/UV oxidation processes,” Journal of Environmental Management, vol. 164, pp. 114–120, Dec. 2015, doi: 10.1016/J.JENVMAN.2015.08.024.

G. Matafonova and V. Batoev, “Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: A review,” Water Research, vol. 132, pp. 177–189, Apr. 2018, doi: 10.1016/J.WATRES.2017.12.079.

N. Wardenier, Z. Liu, A. Nikiforov, S. W. H. Van Hulle, and C. Leys, “Micropollutant elimination by O3, UV and plasma-based AOPs: An evaluation of treatment and energy costs,” Chemosphere, vol. 234, pp. 715–724, Nov. 2019, doi: 10.1016/J.CHEMOSPHERE.2019.06.033.

I. Oller, S. Malato, and J. A. Sánchez-Pérez, “Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—A review,” Science of The Total Environment, vol. 409, no. 20, pp. 4141–4166, Sep. 2011, doi: 10.1016/J.SCITOTENV.2010.08.061.

N. Wardenier, Z. Liu, A. Nikiforov, S. W. H. Van Hulle, and C. Leys, “Micropollutant elimination by O3, UV and plasma-based AOPs: An evaluation of treatment and energy costs,” Chemosphere, vol. 234, pp. 715–724, Nov. 2019, doi: 10.1016/J.CHEMOSPHERE.2019.06.033.

D. B. Miklos, C. Remy, M. Jekel, K. G. Linden, J. E. Drewes, and U. Hübner, “Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review,” Water Research, vol. 139, pp. 118–131, Aug. 2018, doi: 10.1016/J.WATRES.2018.03.042.

Z.-Y. Huo, Y. Du, Z. Chen, Y.-H. Wu, and H.-Y. Hu, “Evaluation and prospects of nanomaterial-enabled innovative processes and devices for water disinfection: A state-of-the-art review,” Water Research, vol. 173, p. 115581, Apr. 2020, doi: 10.1016/J.WATRES.2020.115581.

E. Brillas and S. Garcia-Segura, “Benchmarking recent advances and innovative technology approaches of Fenton, photo-Fenton, electro-Fenton, and related processes: A review on the relevance of phenol as model molecule,” Separation and Purification Technology, vol. 237, p. 116337, Apr. 2020, doi: 10.1016/J.SEPPUR.2019.116337.

I. A. Katsoyiannis, S. Canonica, and U. von Gunten, “Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2,” Water Research, vol. 45, no. 13, pp. 3811–3822, Jul. 2011, doi: 10.1016/J.WATRES.2011.04.038.

R. Andreozzi, V. Caprio, A. Insola, and R. Marotta, “Advanced oxidation processes (AOP) for water purification and recovery,” Catalysis Today, vol. 53, no. 1, pp. 51–59, Oct. 1999, doi: 10.1016/S0920-5861(99)00102-9.

M. Solis and S. Silveira, “Technologies for chemical recycling of household plastics – A technical review and TRL assessment,” Waste Management, vol. 105, pp. 128–138, Mar. 2020, doi: 10.1016/J.WASMAN.2020.01.038.

X. Zhou et al., “Review of global sanitation development,” Environment International, vol. 120, pp. 246–261, Nov. 2018, doi: 10.1016/J.ENVINT.2018.07.047.

A. Gherghel, C. Teodosiu, and S. De Gisi, “A review on wastewater sludge valorisation and its challenges in the context of circular economy,” Journal of Cleaner Production, vol. 228, pp. 244–263, Aug. 2019, doi: 10.1016/J.JCLEPRO.2019.04.240.

R. F. Beims, C. L. Simonato, and V. R. Wiggers, “Technology readiness level assessment of pyrolysis of trygliceride biomass to fuels and chemicals,” Renewable and Sustainable Energy Reviews, vol. 112, pp. 521–529, Sep. 2019, doi: 10.1016/J.RSER.2019.06.017.

G. Iervolino, I. Zammit, V. Vaiano, and L. Rizzo, “Limitations and Prospects for Wastewater Treatment by UV and Visible-Light-Active Heterogeneous Photocatalysis: A Critical Review,” Topics in Current Chemistry. 2020, doi: 10.1007/s41061-019-0272-1.

D. Tompkins et al., “EU Horizon 2020 Research for A Sustainable Future: INNOQUA—A Nature-Based Sanitation Solution,” Water, vol. 11, no. 12, p. 2461, Nov. 2019, doi: 10.3390/w11122461.

J. J. Rueda-Marquez, I. Levchuk, P. Fernández Ibañez, and M. Sillanpää, “A critical review on application of photocatalysis for toxicity reduction of real wastewaters,” Journal of Cleaner Production. 2020, doi: 10.1016/j.jclepro.2020.120694.

R. Stirling, W. S. Walker, P. Westerhoff, and S. Garcia-Segura, “Techno-economic analysis to identify key innovations required for electrochemical oxidation as point-of-use treatment systems,” Electrochimica Acta, 2020, doi: 10.1016/j.electacta.2020.135874.

E. Brillas and S. Garcia-Segura, “Benchmarking recent advances and innovative technology approaches of Fenton, photo-Fenton, electro-Fenton, and related processes: A review on the relevance of phenol as model molecule,” Separation and Purification Technology, vol. 237, 2020, doi: 10.1016/j.seppur.2019.116337.

G. Iervolino, I. Zammit, V. Vaiano, and L. Rizzo, “Limitations and Prospects for Wastewater Treatment by UV and Visible-Light-Active Heterogeneous Photocatalysis: A Critical Review,” Topics in Current Chemistry, vol. 378, no. 1, 2020, doi: 10.1007/s41061-019-0272-1.

T. Coward, H. Tribe, and A. P. Harvey, “Opportunities for process intensification in the UK water industry: A review,” Journal of Water Process Engineering, vol. 21, pp. 116–126, 2018, doi: 10.1016/j.jwpe.2017.11.010.

A. Gherghel, C. Teodosiu, and S. De Gisi, “A review on wastewater sludge valorisation and its challenges in the context of circular economy,” Journal of Cleaner Production, vol. 228, pp. 244–263, 2019, doi: 10.1016/j.jclepro.2019.04.240.

L. Rizzo et al., “Best available technologies and treatment trains to address current challenges in urban wastewater reuse for irrigation of crops in EU countries,” Science of the Total Environment, vol. 710. Elsevier B.V., Mar-2020, doi: 10.1016/j.scitotenv.2019.136312.

S. Jiménez, M. Andreozzi, M. M. Micó, M. G. Álvarez, and S. Contreras, “Produced water treatment by advanced oxidation processes,” Science of The Total Environment, vol. 666, pp. 12–21, May 2019, doi: 10.1016/J.SCITOTENV.2019.02.128.

M. I. Stefan, “ Advanced Oxidation Processes for Water Treatment - Fundamentals and Applications ,” Water Intelligence Online, 2017, doi: 10.2166/9781780407197.

Cómo citar
Machuca-Martínez, F., Almansa-Ortegón, M., & Manyoma-Velázquez, P. C. (2020). Análisis multicriterio para la selección de tecnologías avanzadas de oxidación en el tratamiento de contaminantes emergentes. Respuestas, 25(2). https://doi.org/10.22463/0122820X.2347

Descargas

La descarga de datos todavía no está disponible.
Publicado
2020-05-01
Sección
Artículos de Investigación