Implantación iónica

Implantación iónica

Contenido principal del artículo

Hector Jaime Dulce-Moreno
Valeri Dougar-Jabon
Piotr Andrei-Tsygankov

Resumen

En este trabajo se presenta una revisión de las diferentes técnicas de implantación de iones desde los implantadores por haces iónicos, utilizados en la fabricación de semiconductores, pasando por una serie de desarrollos con base en la tecnología de la física del plasma, hasta llegar a la técnica denominada Implantación Iónica Tridimensional (3DII). Para cada una de las técnicas de implantación iónica se presentan los dispositivos más comunes y se analizan sus características principales. Para el caso de la Implantación Iónica Tridimensional se describe el equipo JUPITER (Joint Universal Plasma and Ion Technologies Experimental Reactor), único en el mundo, para la investigación de descargas pulsadas de alto voltaje a bajas presiones y para el tratamiento superficial de materiales. Este dispositivo se implementó en el Laboratorio de Física del Plasma y Corrosión de la Universidad Industrial de Santander, con la colaboración financiera de COLCIENCIAS y con la cooperación de la Universidad Técnica Estatal Bauman de Moscú.

Palabras Clave: Implantación iónica tridimensional; descarga de alto voltaje; nitruración.

 

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

Alexeff I., Jones W.D., et al, Transient plasma sheathdiscovered

by ion-acoustic waves, The Physics of Fluids, 12, No.2, (1969) 345-346

Berktusunova R.M., Demokan O., Perturbation analysis of sheath evolution, with application to plasma source ion implantation, J. Phys. D : Appl. Phys., 34, (2001) 326-329

Berni L.A., Ueda M., Gomes G.F., et al, Experimental results of a DC glow discharge source with controlled plasma floating for plasma immersion ion implantation, J. Phys. D : Appl. Phys., 33, (2000) 1592-1595

Conrad J.R., Sheath thickness and potential profiles of ion-matrix sheaths for cylindrical and spherical electrodes, J. Appl. Phys., 62, (1987) 777-779

Conrad J.R., Plasma Source Ion Implantation: A Approach to Ion Beam Modification of Materials, Materials Science and Engineering, A116, (1989) 197-203

Conrad J.R., Radtke J.L., Dodd R.A., et al, Plasma source ion-implantation technique for surface modification of materials, J. Appl. Phys., 62, (1987) 4591-4596

Conrad J.R., U.S. patent No. 4764394.-Date of patent 16/08/1988

Conrads H., Schmidt M., Plasma generation and plasma sources, Plasma Sources Sci. Technol., 9, (2000) 441-454

Chapman B., Glow Discharge Processes, John Wiley, New York, (1980) 406p

Chu P.K., Cheung N.W., Microcavity engineering by plasma immersion ion implantation, Materials

Chemistry and Physics, 57, (1998) 1-16

Denholm A.S., Wittkower A.B., Ion beam system for implanting industrial products of various shapes, Nuclear Instr. And Methods in Phys. Research, B6,(1985) 88-93

Destefani J.D., Ion implantation update, Advan. Mater. and Processes in Metal Progress, 10, (1988) 39-43

Dougar V.D., Dulce H.J., Tsygankov P.A., High voltage pulse discharge for ion treatment of metals, Rev. Sci. Instrum., 73, (2002) 828-830

Emmert G.A., Henry M.A., Numerical simulation of plasma sheath expansion, with applications to plasmasource ion implantation, J. Appl. Phys., 71, (1992) 113-117

Hong M., Emmert G.A., Two-dimensional fluid simulation of expanding plasma sheaths, J. Appl. Phys., 78, (1995) 6967-6973

Husein I.F., Chan C., et al, The effect of high-dose nitrogen plasma immmersion ion implantation on silicone surfaces, J. Phys. D: Appl. Phys., 33, (22), (2000) 2869-2874

Khvesyuk V.I., Tsygankov P.A, The use of high-voltage discherge at low pressure for 3D in implantation, Surface and Coating Technol., 96, (1997) 68-74

Korber F.J., Munz W.D., A new developed linear ion implanter for indu strial applications, Mat. Science and Eng., A116, (1989) 205-209

Lieberman M.A., The model of transient plasma sheath, J. Appl. Phys., 66, (1989) 2926-2931

Lieberman M.A., Lichtenberg A.J., Principles of plasmas discharges and materials processing, John Wiley & Sons Inc., New York, (1994) 572p

Liu A.G., Wang X., et al, Inner surface ion implantation using deflecting electric field, Nucl. Instr. And Meth. In Phys. Res., B 143, (1998a) 306-310

Liu A.G., Wang X.F., Tang B.Y., Chu P.K., Dose and energy uniformity over inner surface in plasma immersion ion implantation, J. Appl. Phys., 84, (1998b) 1859-1862

Liu A.G., Wang X., et al, A novel distributed system for plasma immersion ion implanter control and automation, Rev. Sci. Instrum., 69, (1998c) 1495-1498

Madapura M., Conrad J.R., et al, Surface modification of monel K-500 by the plasma source ion implantation process, Surface Coating Technol., 39/40, (1989) 587-594

Mandl S., Gunzel R., Moller W.,Sheat and presheat dynamics in plasma immersion ion implantation,J. Phys. D: Appl. Phys., 31, (1998) 1109-1117

Matossian J.N., Wei R., Williams J.D., Plasma-based ion implantation and electron-bombardment for largescale surface modification of materials, Surface Coating Technol., 96, (1997) 58-67

McClure G.W., High-Voltage Glow Discharges in D2 Gas. I. Diagnostic Measurements, Phys. Rev., 124, (1961) 969-982

Molera Solá P., Tratamientos térmicos de los metales. Marcombo, Barcelona, (1991) 84

Munz W.D., The unbalanced magnetron: current status of development, Surface Coating Techol., 48, (1991) 81-94

Pokrovskaya-Soboleva A.S. and Klarfeld B.N., Russian J. Appl. Phys., 32, (1957) 993-1000

Qin S., Chan C., McGruer N.E., Energy distribution of boron ions during plasma immersion ion implantation, Plasma Source Sci. Technol., 1, (1992) 1-6

Qiu X., Conrad J.R., et al, Plasma Source Nitrogen Ion Implantation of Ti-6Al-4V, Metallurgical Transactions A, 21A, (1990) 1663-1667

Qiu X., Conrad J.R., et al, Microstructural study of nitrogen-implanted Ti-6Al-4V alloy, Nucl. Instr. And Meth. In Phys. Research, B59/60, (1991) 951-956

Rej D.J., Faehl R.J., Matossian J.N., Key issues in plasma-source ion implantation, Surface Coatings Techn., 96, (1997) 45-51

Scheuer J.T., Shamin M.M., Conrad J.R. , et al., Model of plasma source ion implantation in planar, cylindrical, and spherical geometries, J. Appl. Phys., 67, (1990) 1241-1245

Shamin M.M., Muller D.E. , Conrad J.R., et al, Distribution of incident ions and retained dose analysis for a wedge Shaped target in plasma source ion implantation, J. Appl. Phys., 77, (1995) 1-5

Shamin M.M., Scheuer J.T. , Conrad J.R.,Measurements of spatial and temporal sheath evolution for spherical and cylindrical geometries in plasma source ion implantation, J. Appl. Phys., 69, (1991a) 2904-2908

Shamin M.M., Scheuer J.T., Conrad J.R., et al., Measurement of electron emission due to energetic ion bombardment in plasma source ion implantation, J. Appl. Phys., 70, (1991b) 4756-4759

Sharkeev Y.P., Kozlov E.V., Didenko A.N., Defect structures in metals exposed to irradiation of different nature, Surface Coating Tech., 96, (1997) 95-102

Streade C.A., Practical applications of ion implantation for tribological modification of surfaces, Wear., 130, (1989) 113-122

Tang B.Y., Fetherston R.P., et al, Measurement of ion species ratio in the plasma source ion implantation process, J. Appl. Phys., 73, (1993) 4176-4180

Tang B.Y., Chu P.K., Wang S.Y., et al., Methane and nitrogen plasma immersion ion implantation of titanium metal, Surface Coating Technol., 103, (1998) 248- 251

Tian X., Tang B., Chu P.K., Accurate determination of pulsed current waveform in plasma immersion ion implantation processes, J. Appl. Phys., 86, (1999) 3567-3570

Tian X.B., Chu P.K., Experimental investigation of the electrical characteristics and initiation dynamics of pulsed high-voltage glow discharge, J. Phys. D: Appl. Phys., 34, (2001) 354-359

Valentini H.B., Sheath formation in low-pressure discharges, Plasma Sources Sci. Technol, 9, (2000) 74-582

Von Grun R., Anlagen zum Plasmanitrieren und Plasmacarburieren, Elektrowarme International, B.3-4 (47), (1987) 178-182

Widner M., Alexeff I., Andrews J.G, et al, Sheath growth in a low pressure plasma, The Physics of Fluids, 14, (1971) 339-343

Widner M., Alexeff I., Jones W.D., et al, Ion acoustic wave exitation and ion sheath evolution, The Physics of Fluids, 13, (1970) 2532-2540

Zeng X.C., Kwok T.K., et al, Cylindrical bore using auxiliary electrode, J. Appl. Phys., 83, (1998) 44-47

Ziegler J.F., Biersack J.P., and U.Littmark, The stopping and range of ions in solids, Pergamon Press, New York, (1985) 367p

Ziegler J.F., Handbook of Ion Implantation Technology, Elsevier Science Publishers, Amsterdam, (1992) 699p

Artículos más leídos del mismo autor/a