Caracterización microscópica de texturas superficiales fabricadas aditivamente mediante estereolitografía láser

Caracterización microscópica de texturas superficiales fabricadas aditivamente mediante estereolitografía láser

Contenido principal del artículo

Ely Dannier Valbuena-Niño
Jose Luis Endrino-Armenteros
Hugo Armando Estupiñan-Duran
Boris Pérez-Gutiérrez
Andrés Díaz-Lantada


Objetivo: En nuestro trabajo presentamos el desarrollo de texturas superficiales con diferentes geometrías fabricadas por manufactura aditiva. Metodología: Los sustratos con diferentes texturas superficiales son diseñados por medio de programas asistidos por computador (CAD). La fabricación de las diferentes superficies se realiza capa a capa, en un solo proceso, por medio de la técnica de estereolitografía láser (SLA), directamente desde los archivos CAD. Resultados: Las superficies de los sustratos fueron evaluadas mediante ensayos ópticos con el objetivo de medir la topografía de las superficies, validar el acabado superficial y controlar los métodos de fabricación a través de las estrategias de medición en diferentes perfiles. Conclusión: En este estudio mostramos que las texturas superficiales impresas presentaron una reducción de los valores de medidas de longitud, volumen y masa en comparación con la definida en el diseño.

Palabras clave: Manufactura aditiva, Microscopía óptica, Resina fotocurable.




Objective: This work shows surface texture development using several different geometries produced by additive manufacturing. Methodology: The substrates with different surface textures are designed by computer aided programs (CAD). Manufacture of the different surfaces is performed in a layer by layer basis, in a single process using the laser stereolithography technique (SLA), directly from CAD files. Results: substrates surfaces were evaluated by optical tests in order to measure the topography of such surfaces, to validate the surface finishing and to control manufacturing methods by using the strategy of measurement in different profiles. Conclusion: In this study we demonstrated that the printed surface textures showed a reduction in the values of length, volume and mass measurements when compared to the ones defined in the design.

Keywords: Additive Manufacturing, optical microscopy, photo-curable resin.




Objetivo: Em nosso trabalho, apresentamos o desenvolvimento de texturas de superfície com diferentes geometrias produzidas por manufatura aditiva. Metodologia: Os substratos com diferentes texturas superficiais são projetados por programas assistidos por computador (CAD). A fabricação das diferentes superfícies é realizada camada por camada, em um processo por meio da técnica de estereolitografia laser (SLA), diretamente dos arquivos CAD. Resultados: As superfícies dos substratos foram avaliadas por meio de ensaios ópticos, a fim de medir a topografia das superfícies, validar o acabamento superficial e controlar métodos de fabricação por meio das estratégias de medição em diferentes perfis. Conclusão: Este estudo mostrou que as texturas superficiais impressas apresentam uma redução dos valores das medidas de comprimento, volume e massa, em comparação com o definido no desenho.

Palavras-chave: Manufatura aditiva, Microscopia óptica, Resina fotocurável.


Los datos de descargas todavía no están disponibles.

Detalles del artículo

Biografía del autor/a (VER)

Ely Dannier Valbuena-Niño, Universidad Industrial de Santander.

Magister en Física.

Jose Luis Endrino-Armenteros, Cranfield University

Doctorado en Ingeniería Mecánica.

Hugo Armando Estupiñan-Duran, Universidad Nacional de Colombia.

Doctorado en Ingeniería Química.

Boris Pérez-Gutiérrez, Universidad Francisco de Paula Santander

Magister en Ingeniería de Sistemas.

Andrés Díaz-Lantada, Universidad Politécnica de Madrid.

Doctorado Ingeniero Industrial.

Referencias (VER)

J. Brennan-Craddock, D. Brackett, R. Wildman and R. Hague. “The design of impact absorbing structures for additive manufacture”, Journal of Physics Conference series, vol. 382, pp. 1-7, 2012.

D. W. Hutmacher and M. Sittinger and M. V. Risbud. “Scaffold based tissue engineering: rationale for computer-aided design and solid freeform fabrication systems”, Trends in Biotechnology, vol. 22, pp. 354-362, 2004.

K. G. Jaya Christyan, U. Chandrasekhar and K. Venkateswarlu. “A study on the influence of process parameters on the Mechanical Properties of 3D printed ABS composite”, Conference Series: Materials Science and Engineering, vol. 114, no. 012109, pp. 1-8, 2016.

D. T. Pham and R. S. Gault. “A Comparison of Rapid Prototyping Technologies”, International Journal of Machine Tools and Manufacture, vol. 38, pp. 1257-1287, 1998.

B. Wendel, D. Rietzel, F. Kühnlein, et al. “Additive Processing of Polymers”, Macromolecular Materials and Engineering, vol. 293, pp. 799-809, 2008.

F. P. Melchels, J. Feijen and D. W. Grijpma. “A review on stereolithography and its applications in biomedical engineering”, Biomateriales, vol. 31, pp. 6121-6130, 2010.

K. V. Wong and A. Hernandez. “A Review of Additive Manufacturing”, ISRN Mechanical Engineering, vol. 2012, no. 208760, pp. 1-10, 2012.

S. H. Ahn, M. Montero, D. Odell, et al. “Anisotropic material properties of fused deposition modeling ABS” Rapid Prototyping Journal, vol. 8, pp. 248-257, 2002.

J. P. Kruth, L. Froyen, J. Van Vaerenbergh, et al. “Selective laser melting of iron-based powder”, J. Mater. Process. Technol., Vol. 149, pp. 616-622, 2004.

I. Yadroitsev, P. Bertrand, and I. Smurov. “Parametric analysis of the selective laser melting process”, Appl. Surf. Sci., vol. 253, pp. 8064- 8069, 2007.

S. Bremen, W. Meiners, and A. Diatlov. “Laser Technik Journal”, Laser Tech. J., vol. 9, pp. 33-38, 2012.

S. Maruo and K. Ikuta. “Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization”, Sensors and Actuators A: Physical, vol. 100, pp. 70-76, 2002.

C. Sun, N. Fang, D. M. Wu and X. Zhang. “Projection using digital micromirror dynamic mask”, Sensors and Actuators A: Physical, vol. 121, pp. 113-120, 2005.

A. T. Pham, D. Kim, T. Lim, et al. “Three-Dimensional SiCN Ceramic Microstructures via NanoStereolithography of Inorganic Polymer Photoresists”, Advanced Functional Materials, Vol. 16, pp. 1235-1241, 2006.

L. M. Griffith and W. J. Halloran. “Freeform fabrication of ceramics via stereolithography”, Journal of the American Ceramic Society, vol. 79, pp. 2601-2608, 1996.

X. Zhang, X. N. Jiang, and C. Sun. “Micro-stereolithography of polymeric and ceramic microstructures”, Sensors and Actuators A physical, vol. 77, 149-156, 1999.

C. Hinczewski, S. Corbel, and T. J. Chartier. “Ceramic suspensions suitable for stereolithography”, Journal of the European Ceramic Society, vol. 18, pp. 583-590, 1998.

F. Tsumori, H. Kawanishi, K. Kudo, et al. “Development of threedimensional printing system for magnetic elastomer with control of magnetic anisotropy in the structure”, Japanese Journal of Applied Physics, vol. 55, no. 06GP18, pp. 1-5, 2016.

S. Kenzari, D. Bonina, J. M. Dubois and V. Fourné. “Complex metallic alloys as new materials for additive manufacturing”, Science and Technology of Advanced Materials, vol. 15, no. 024802, pp. 1-9, 2014.

R. Liska, M. Schuster, R. Inführ, et al. “Photopolymers for rapid prototyping”, Journal of Coatings Technology and Research, vol. 4, pp. 505-510, 2007.

S. Kawata , H. B. Sun, T. Tanaka, and K. Takada. “Finer features for functional microdevices”, Nature, vol. 412, no. 6848, pp. 697-698, 2001.

L. L. Lebel, B. Aissa, M. A. El Khakani and D. Therriault. “Ultraviolet-assisted direct-write fabrication of carbon nanotube/polymer nanocomposite microcoils”, Advanced Materials, vol. 22, pp. 592-596, 2010.

R. D. Farahani, L. L. Lebel and D. Therriault “Processing parameters investigation for the fabrication ofselfsupported and freeform polymeric microstructures using ultravioletassisted three dimensional printing”, Journal of Micromechanics and Microengineering, vol. 24, pp. 1-12, 2014.

J. Breuninger, R. Becker, A. Wolf, S. Rommel and A. Verl. Generative Fertigung mit Kunststoffen. Berlin: Springer, 2013.

T. Grimm, G. Wiora and G. Witt. “Characterization of typical surface effects in additive manufacturing with confocal microscopy”, Surface Topography: Metrology and Properties, vol. 3, pp. 1-12, 2015.

R. Berge. Strategy Consultants GmbH. Frankfurt. “Additive Manufacturing. A Game Changer for the Manufacturing Industry?”, 2013, [Online]. en:

R. Leach. Optical Measurement of Surface Topography, Berlin: Springer, 2011.

S. Thomas, S. Ernst and S. Michael. “Material optimization of PA12 laser sintering powder to improve surface quality”, in ANTEC Conference proceedings (Charlotte, North Carolina, US), vol. 4, pp. 1910–1914, Society of Plastics Engineers, 2006.

K. Chockalingam, N. Jawahar and U. Chandrasekhar. “Influence of layer thickness on mechanical properties in stereolithography”, Rapid Prototyping Journal, vol. 12, no. 2, pp. 106–113, 2006.

B. Widemann, K. H. Dusel and J. Eschl. “Investigation into the influence of material and process on part distortion”, Rapid Prototyping Journal, vol. 1, pp. 17–22, 1995.

G. V. Salmoria, C. H. Ahrens, M. Fredel, V. Soldi and A. T. Pires. “Stereolithography somos 7110 resin: Mechanical behavior and fractography of parts post-cured by different methods”, Polymer Testing, vol. 24, pp. 175–162, 2005.

J. H. Sandoval and R. B. Wicker. “Functionalizing stereolithography resins: effects of dispersed multiwalled carbon nanotubes on physical properties” Rapid Prototyping Journal, vol. 12, pp. 292–303, 2006.

Artículos más leídos del mismo autor/a