Design turbine blade Aeolian of vertical axis using laminated tin palm material using the finite element method
Diseño de álabe de turbina eólica de eje vertical usando material laminado de Palma de Lata mediante el método de los elementos finitos
Main Article Content
This work focuses in analyze the mechanical behavior of a vertical axis wind turbine Blade, which is constituted by a natural composite material of “Palma de Lata” and binder, constituents for which its mechanical properties are obtained through mechanical tests and literature references. This study was made under the wind conditions of the colombian “Cañon del Chicamocha”, whose aerodynamic loads (pressures) were obtained in previus studies. The Design was made base on the layers layout of the composite, from stress distribution analysis the critical regions to reinforce the blade were found. At last, the behavior of the reinforced Blade was verified, obtaining in the “Palma de Lata” laminated a feasible alternative to be used in the wind turbines design.
Downloads
Article Details
L. García, J. Jaramillo and J. Chacón, “Análisis aerodinámico del perfil de los álabes de una turbina eólica de eje vertical mediante simulación en 2d usando cfd,” Universidad Industrial de Santander, 2014.
T. S. Sene, L. V. da Silva, S. C. Amico, D. Becker, A. M. Ramirez, and L. A. F. Coelho, “Glass fiber hybrid composites molded by RTM using a dispersion of carbon nanotubes/clay in epoxy,” Mater. Res., vol. 16, no. 5, pp. 1128– 1133, Jul. 2013.
G. Suresh, L. S. Jayakumari, G. Suresh, and L. S. Jayakumari, “Evaluating the mechanical properties of E-Glass fiber/carbon fiber reinforced interpenetrating polymer networks,” Polímeros, vol. 25, no. 1, pp. 49–57, Feb. 2015.
Á. O. Díaz-Rey, J. E. González-Gil, O. A. González-Estrada, Á. Díaz Rey, J. González Gil, and O. A. González-Estrada, “Análisis de un generador de HHO de celda seca para su aplicación en motores de combustión interna,” Rev. UIS Ing., vol. 17, no. 1, pp. 143–154, 2018.
Y. J. Rueda Ordóñez, K. K. Tannous, Y. Rueda-Ordóñez, and K. K. Tannous, “Análisis cinético de la descomposición térmica de Biomasa aplicando un esquema de reacciones paralelas independientes,” Rev. UIS Ing., vol. 16, no. 2, pp. 119–128, 2017.
K. Molina, D. Ortega, M. Martínez, W. Pinto Hernández, and O. A. González-Estrada, “Modelado de la interacción fluido estructura (FSI) para el diseño de una turbina eólica HAWT,” Rev. UIS Ing., vol. 17, no. 2, pp. 269–282, 2018.
E. Galimany, M. Ramón, and M. Delgado, “First evidence of fiberglass ingestion by a marine invertebrate (Mytilus galloprovincialis L.) in a N.W. Mediterranean estuary,” Mar. Pollut. Bull., vol. 58, no. 9, pp. 1334–1338, Sep. 2009.
J. Beauson and P. Brøndsted, “Wind Turbine Blades: An End of Life Perspective,” in MAREWINT, Cham: Springer International Publishing, 2016, pp. 421–432.
WIND EUROPE, “Discussion paper on managin composite blade waste,” 2017. [Online]. Available: https://windeurope. org/wp-content/uploads/files/policy/topics/ sustainability/Discussion-paper-on-bladewaste- treatment-20170418.pdf. [Accessed: 10- Jun-2018].
L. Mishnaevsky, P. Freere, R. Sinha, P. Acharya, R. Shrestha, and P. Manandhar, “Small wind turbines with timber blades for developing countries: Materials choice, development, installation and experiences,” Renew. Energy, vol. 36, no. 8, pp. 2128–2138, Aug. 2011.
M. Ho et al., “Critical factors on manufacturing processes of natural fibre composites,” Compos. Part B, vol. 8, no. 8, pp. 3549–3562, 2012.
M. J. Plotkin, L. Famolare, Conservation International., and Asociación Nacional para la Conservación de la Naturaleza., Sustainable harvest and marketing of rain forest products. Island Press, 1992.
C. Osorio, J. G. Carriazo, and O. Almanza, “Antioxidant activity of corozo (Bactris guineensis) fruit by electron paramagnetic resonance (EPR) spectroscopy,” Eur. Food Res. Technol., vol. 233, no. 1, pp. 103–108, Jul. 2011.
I. Gil, R. Prada, and A. Rey, “Análisis y caracterización de las propiedades físicas y mecánicas de la palma de lata,” Universidad Industrial de Santander, 2008.
D. Chavez, F. García, and A. Pertuz, “Estudio del comportamiento dinámico de un material compuesto laminado elaborado a partir de la corteza de la palma de lata,” Universidad Industrial de Santander, 2016.
D. Castro and I. Ortega, “Caracterización ortotrópica de las propiedades mecánicas de la palma de lata para su uso como reemplazo de fibras sintéticas en turbinas eólicas,” in COIES2017 - Conferencia Internacional de Energía Sostenible & Workshop Materiales para Nuevas Tecnologías de Energía, 2017.
UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA, “INFORME SECTORIAL SOBRE LA EVOLUCIÓN DE LA DISTRIBUCIÓN Y COMERCIALIZACIÓN DE ENERGÍA ELÉCTRICA EN COLOMBIA,” 2011. [Online]. Available: http://www.upme. gov.co/Docs/Asocodis_2010.pdf. [Accessed: 10-Jun-2018].
O. C. Zienkiewicz, El método de los elementos finitos. Reverté, 1982.
A. Ayestarán, C. Graciano, and O. A. González- Estrada, “Resistencia de vigas esbeltas de acero inoxidable bajo cargas concentradas mediante elementos finitos,” Rev. UIS Ing., vol. 16, no. 2, pp. 61–70, Sep. 2017.
J. Martínez, E. Casanova, C. Graciano, and O. A. González-Estrada, “Sensitivity analysis of a member under compression via Monte Carlo method,” Rev. UIS Ing., vol. 17, no. 2, pp. 179– 184, 2018.
D. Castro, I. Ortega, and R. Güiza, “Reducción de los esfuerzos y las deformaciones de un álabe de turbina eólica de eje vertical por medio de refuerzos estructurales internos,” in CCMN2017 - XI Congreso Colombiano de Métodos Numéricos, 2017, p. 9.
A. Zhou, D. Huang, H. Li, and Y. Su, “Hybrid approach to determine the mechanical parameters of fibers and matrixes of bamboo,” Constr. Build. Mater., vol. 35, pp. 191–196, Oct. 2012.
D. Huang, Y. Bian, A. Zhou, and B. Sheng, “Experimental study on stress–strain relationships and failure mechanisms of parallel strand bamboo made from phyllostachys,” Constr. Build. Mater., vol. 77, pp. 130–138, Feb. 2015.
D. Chavez, F. Garcia, and A. Pertuz, Estudio del comportamiento dinámico de un material compuesto laminado elaborado a partir de la corteza de la pala de lata. Bucaramanga, 2016.
E. J. Barbero, Finite Element Analysis of Composite Materials Using ANSYS, 2nd ed. Boca Ratón, Florida, U.S.A.: CRC Press, 2013.
D. Castro, I. Ortega, and M. Martinez, “Análisis estructural de un álabe de aerogenerador de eje vertical constituido por material natural compuesto,” in CIBIM 2017-XIII Congreso Iberoamericano de Ingeniería Mecánica, 2017, p. 7.
M. Islam, A. Fartaj, and R. Carriveau, “Analysis of the Design Parameters related to a Fixed-pitch Straight-Bladed Vertical Axis Wind Turbine,” Wind Eng., vol. 32, no. 5, pp. 491–507, 2008.
D. W. Green, J. E. Winandy, and D. E. Kretschmann, Mechanical properties of wood, vol. 113. 1999.
K. S. Chan, H. B. Senin, I. Naimah, M. Rusop, and T. Soga, “STRUCTURAL AND MECHANICAL PROPERTIES OF POLYVINYL ALCOHOL (PVA) THIN FILM,” in AIP Conference Proceedings, 2009, vol. 1136, no. 1, pp. 366–369.
S. Bueno, L. Rodríguez, and R. Cruz, “Propuesta de elemento constructivo base laminado de guadua,” Universidad Industrial de Santander, 2005.
F. Chen, D.-J. Kang, and J.-H. Park, “New measurement method of Poisson’s ratio of PVA hydrogels using an optical flow analysis for a digital imaging system,” Meas. Sci. Technol., vol. 24, no. 5, p. 055602, May 2013.
J. E. Ibarra-Jaramillo, L. F. Rodríguez-García, and J. L. Velazco-Chacón, “MODELADO NUMÉRICO DEL PERFIL DE LOS ÁLABES DE UNA VAWT,” 2015, p. 9.
L. Wang, A. Kolios, T. Nishino, P. L. Delafin, and T. Bird, “Structural optimisation of verticalaxis wind turbine composite blades based on finite element analysis and genetic algorithm,” Compos. Struct., vol. 153, no. January 2015, pp. 123–138, 2016.
M. Raciti Castelli, A. Dal Monte, M. Quaresimin, and E. Benini, “Numerical evaluation of aerodynamic and inertial contributions to Darrieus wind turbine blade deformation,” Renew. Energy, vol. 51, pp. 101–112, 2013.
W. Liu and Q. Xiao, “Investigation on Darrieus type straight blade vertical axis wind turbine with flexible blade,” Ocean Eng., vol. 110, pp. 339–356, 2015.