Synthesis and characterization of gold nanoparticles in solution using chitosan as reducing agent
Síntesis y caracterización de nanopartículas de oro en solución utilizando quitosán como agente reductor
Main Article Content
Currently the metallic nanoparticles, in particular of noble metals like gold are gaining importance due to their potential applications in various fields, as their physicochemical properties and their low toxicity the materials become of great importance. In this paper the synthesis of gold nanoparticles was carried out in solution using a reducing agent as is the biomolecule chitosan as reducing agent and were also characterized by a spectrophotometric technique as ultraviolet visible to verify the efficiency of the synthesis process, the spectrum showed that the synthesized nanoparticles have an absorption band at 525 nm. characteristic of gold particles to nanometric size.
Downloads
Article Details
Sant, S.B., Nanoparticles: From Theory to Applications. Materials and Manufacturing Processes, 2012. 27(12): p. 1462-1463.
Ball, P., Natural strategies for the molecular engineer. Nanotechnology, 2002. 13: p. 15-28.
Brock, S.L., Nanostructures and Nanomaterials: Synthesis, Properties and Applications By Guozhang Cao (University of Washington). Imperial College Press (distributed by World Scientific): London. Journal of the American Chemical Society, 2004. 126(44): p. 14679-14679.
Velásquez, C., S. Koteich, and F. López, Nanopartículas: Fundamentos y Aplicaciones. Universidad de Los Andes, Mérida, Venezuela., 2015.
Bönnemann, H. and Ryan M. Richards, Nanoscopic Metal Particles − Synthetic Methods and Potential Applications. European Journal of Inorganic Chemistry, 2001. 2001(10): p. 2455-2480.
Sifontes, A., et al., Preparación de nanopartículas de plata en ausencia de polimeros estabilizantes. Vol. 33. 2010.
Sperling, R.A. and W.J. Parak, Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010. 368(1915): p. 1333-1383.
Alivisatos, A.P., Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science, 1996. 271(5251): p. 933-937.
Banin, U., et al., Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots. Nature, 1999. 400: p. 542.
Collier, C.P., et al., Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition. Science, 1997. 277(5334): p. 1978-1981.
Kelly, K.L., et al., The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B, 2003. 107, No. 3: p. 668-677.
Pei, Y. and X.C. Zeng, Investigating the structural evolution of thiolate protected gold clusters from first-principles. Nanoscale, 2012. 4(14): p. 4054-4072.
Lv, Y., et al., Preparation of Dialdehyde Chitosan and its Application in Green Synthesis of Silver Nanoparticles. Vol. 8. 2013. 6161-6172.
Sarkany, A., et al., Unsupported Pd nanoparticles prepared by gamma-radiolysis of PdCl2. Solid State Ionics, 2005. 176, No. 1-2: p. 209–215.
G. Nanoparticles: From Theory to Application. 2004: WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Luo, C., et al., The role of poly (ethylene glycol) in the formation of silver nanoparticles. Journal of Colloid and Interface Science, 2005. 288(2): p. 444-448.
Pal, S., Y.K. Tak, and J.M. Song, Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium em Escherichia coli/em. Applied and Environmental Microbiology, 2007. 73(6): p. 1712-1720.
Raveendran, P., J. Fu, and S.L. Wallen, A simple and “green” method for the synthesis of Au, Ag, and Au–Ag alloy nanoparticles. Green Chemistry, 2006. 8(1): p. 34-38.
Kapoor, S., Preparation, Characterization, and Surface Modification of Silver Particles. Langmuir, 1998. 14(5): p. 1021-1025.
Guozhong, C. Nanostructures and Nanomaterials Imperial College Press, 2004.