Adaptation of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans strains on sphalerite concentrate from mining waste
Adaptación de las cepas de Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans y Leptospirillum ferrooxidans en el concentrado de esfalerita de residuos mineros
Main Article Content
One of the main characteristics of the microorganisms used in the leaching process is their capacity to adapt to aggressive environments, characterized by a notable presence of heavy metals. In this study the adaptation of the strains Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans was evaluated on a sphalerite concentrate from mining waste. In the adaptation tests, the energy source (ferrous sulphate) was gradually replaced by percentages of mineral pulp, ending with subcultures without the addition of an external energy source. The results show that the strains A. ferrooxidans and A. thiooxidans are more resistant to high concentrations of sphalerite, compared to the strain of L. ferrooxidans, since, in the case of this strain, it was necessary to repeat some tests (8% of pulp), since a deficient development was evident. This was associated with factors such as the decrease of the Fe+2 energy source, the increase of the pulp density, the accumulation of toxic metals and secondary products of the dissolution of minerals and the increase of the pH.
Downloads
Article Details
A. Ballester, “Biohidrometalurgia y sulfuros complejos. Investigaciones actuales,” Boletin Geologico y Minero, vol. 107, no. 5–6. pp. 139–157, 1996.
A. Ballester, F. González, and M. L. Blázquez, “Biolixiviación de menas naturales. Posibilidades actuales de utilización.,” pp. 24–91, 1988.
Y. Rodríguez, M. L. Blázquez, A. Ballester, F. González, and J. A. Muñoz, “La biolixiviación al comienzo del siglo XXI,” Metalurgia, vol. LIX, no. 37, pp. 121–129, 2001.
D. Barrie Johnson and K. B. Hallberg, Carbon, Iron and Sulfur Metabolism in Acidophilic Micro-Organisms, vol. 54, no. 08. 2008.
F. Anjum, M. Shahid, and A. Akcil, “Biohydrometallurgy techniques of low grade ores: A review on black shale,” Hydrometallurgy, vol. 117–118, pp. 1–12, 2012.
M. Vera, A. Schippers, and W. Sand, “Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation-part A,” Appl. Microbiol. Biotechnol., vol. 97, no. 17, pp. 7529–7541, 2013.
J. Valdés et al., “Acidithiobacillus ferrooxidans metabolism: From genome sequence to industrial applications,” BMC Genomics, vol. 9, no. 597, pp. 1–24, 2008.
M. A. Campodonico et al., “Acidithiobacillus ferrooxidans’s comprehensive model driven analysis of the electron transfer metabolism and synthetic strain design for biomining applications,” Metab. Eng. Commun., 2016.
T. Gu, S. O. Rastegar, S. M. Mousavi, M. Li, and M. Zhou, “Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge,” Bioresource Technology. 2018.
D. Travisany et al., “A new genome of Acidithiobacillus thiooxidans provides insights into adaptation to a bioleaching environment,” Res. Microbiol., vol. 165, no. 9, pp. 743–752, 2014.
A. Ferrer et al., “Complete genome sequence of the bioleaching bacterium Leptospirillum sp. group II strain CF-1,” J. Biotechnol., vol. 222, pp. 21–22, 2016.
W. S. Dunbar, “Biotechnology and the Mine of Tomorrow,” Trends Biotechnol., vol. 35, no. 1, pp. 79–89, 2017.
K. Bosecker, “Bioleaching: Metal solubilization by microorganisms,” FEMS Microbiol. Rev., vol. 20, no. 3–4, pp. 591–604, 1997.
D. B. Johnson and C. A. Du Plessis, “Biomining in reverse gear: Using bacteria to extract metals from oxidised ores,” Miner. Eng., vol. 75, pp. 2–5, 2015.
D. B. Johnson, “Reductive dissolution of minerals and selective recovery of metals using acidophilic iron- and sulfate-reducing acidophiles,” Hydrometallurgy, vol. 127–128, pp. 172–177, 2012.
M. Ye et al., “Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation,” Chemosphere, vol. 185, pp. 1189–1196, 2017.
V. T. Conić, M. M. R. Vujasinović, V. K. Trujić, and V. B. Cvetkovski, “Copper, zinc, and iron bioleaching from polymetallic sulphide concentrate,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 24, no. 11, pp. 3688–3695, 2014.
S. Ghassa, Z. Boruomand, H. Abdollahi, M. Moradian, and A. Akcil, “Bioleaching of high grade Zn-Pb bearing ore by mixed moderate thermophilic microorganisms,” Sep. Purif. Technol., vol. 136, pp. 241–249, 2014.
A. Mahmoud, P. Cézac, A. F. A. Hoadley, F. Contamine, and P. D’Hugues, “A review of sulfide minerals microbially assisted leaching in stirred tank reactors,” Int. Biodeterior. Biodegrad., vol. 119, pp. 118–146, 2017.
W. Krebs, C. Brombacher, P. P. Bosshard, R. Bachofen, and H. Brandl, “Microbial recovery of metals from solids,” FEMS Microbiol. Rev., vol. 20, pp. 605–617, 1997.
J. R. Ban, G. H. Gu, and K. T. Hu, “Bioleaching and electrochemical property of marmatite by Leptospirillum ferrooxidans,” Trans. Nonferrous Met. Soc. China (English Ed., 2013.
P. Kaewkannetra, F. J. Garcia-Garcia, and T. Y. Chiu, “Bioleaching of zinc from gold ores using Acidithiobacillus ferrooxidans,” Int. J. Miner. Metall. Mater., vol. 16, no. 4, pp. 368–374, 2009.
K. Xu, Y. S. Lee, J. Li, and C. Li, “Resistance mechanisms and reprogramming of microorganisms for efficient biorefinery under multiple environmental stresses,” Synth. Syst. Biotechnol., vol. 4, no. 2, pp. 92–98, 2019.
E. Mejía Restrepo, “Mineralogía del proceso de lixiviación bacteriana de calcopirita, esfalerita y galena. Parte 2,” 2010.
C. Gómez, M. L. Blázquez, and A. Ballester, “Bioleaching of a Spanish complex sulphide ore bulk concentrate,” Miner. Eng., vol. 12, no. 98, pp. 93–106, 1999.
A. Giaveno, L. Lavalle, P. Chiacchiarini, and E. Donati, “Bioleaching of zinc from low-grade complex sulfide ores in an airlift by isolated Leptospirillum ferrooxidans,” Hydrometallurgy, vol. 89, no. 1–2, pp. 117–126, 2007.
L. Lavalle, A. Giaveno, C. Pogliani, and E. Donati, “Bioleaching of a polymetallic sulphide mineral by native strains of Leptospirillum ferrooxidans from Patagonia Argentina,” Process Biochem., vol. 43, no. 4, pp. 445–450, 2008.
S. Y. Shi, Z. H. Fang, and J. R. Ni, “Comparative study on the bioleaching of zinc sulphides,” Process Biochem., vol. 41, no. 2, pp. 438–446, 2006.
G. Cabrera, J. M. Gómez, and D. Cantero, “Influence of heavy metals on growth and ferrous sulphate oxidation by Acidithiobacillus ferrooxidans in pure and mixed cultures,” Process Biochem., vol. 40, no. 8, pp. 2683–2687, 2005.
P. A. OLUBAMBI, S. NDLOVU, J. H. POTGIETER, and J. O. BORODE, “Role of ore mineralogy in optimizing conditions for bioleaching low-grade complex sulphide ores,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 18, no. 5, pp. 1234–1246, 2008.
S. M. Mousavi, S. Yaghmaei, M. Vossoughi, A. Jafari, R. Roostaazad, and I. Turunen, “Bacterial leaching of low-grade ZnS concentrate using indigenous mesophilic and thermophilic strains,” Hydrometallurgy, vol. 85, no. 1, pp. 59–65, 2007.
T. M. Roane, I. L. Pepper, and T. J. Gentry, Microorganisms and Metal Pollutants. Elsevier Inc., 2014.
M. Soleimani, S. Hosseini, R. Roostaazad, J. Petersen, S. M. Mousavi, and A. K. Vasiri, “Microbial leaching of a low-grade sphalerite ore using a draft tube fluidized bed bioreactor,” Hydrometallurgy, vol. 99, no. 3–4, pp. 131–136, 2009.
J. Valdés, I. Pedroso, R. Quatrini, and D. S. Holmes, “Comparative genome analysis of Acidithiobacillus ferrooxidans, A. thiooxidans and A. caldus: Insights into their metabolism and ecophysiology,” Hydrometallurgy, vol. 94, no. 1–4, pp. 180–184.
L. xian XIA et al., “Single and cooperative bioleaching of sphalerite by two kinds of bacteria-Acidithiobacillus ferriooxidans and Acidithiobacillus thiooxidans,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 18, no. 1, pp. 190–195, 2008.
A. Kloppers, K. Larmuth, S. Deane, and D. E. Rawlings, “Leptospirilli from different continents have acquired related arsenic-resistance transposons,” Hydrometallurgy, vol. 94, no. 1–4, pp. 170–174, 2008.
D. E. RAWLINGS, “High level arsenic resistance in bacteria present in biooxidation tanks used to treat gold-bearing arsenopyrite concentrates: A review,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 18, no. 6, pp. 1311–1318, 2008.
P. Cogram, “Jarosite,” Ref. Modul. Earth Syst. Environ. Sci., pp. 1–9, 2018.