Magnetorheological fluids: synthesis, properties and applications
Fluidos magnetorreológicos: síntesis, propiedades y aplicaciones
Main Article Content
The magnetorheological fluids have the ability to modify their viscosity quickly by subjecting it to a magnetic field, a quality that classifies them in the category of intelligent materials. Such fluids include three main components; the base fluid that is generally mineral or synthetic oil, magnetizable particles which are dispersed in the base fluid and the additives or stabilizers that prevent agglomeration and sedimentation of the particles, as well as the degradation induced by the carrier medium. The main challenge of these fluids is to maintain the rheological response to the magnetic field, as well as avoid the chemical and microstructural instability of the magnetoreological fluids. In the present investigation an exhaustive bibliographic review was carried out to understand the main aspects of these types of materials, their properties as well as the main applications in the different branches of industry and medicine. The most recent contributions focused on the chemical stability of magnetic particles through the application of surface coatings are discussed.
Downloads
Article Details
M. Cupich, F.J Elizondo, “Amortiguadores magnetorreológico”, Ingenierías, 1 (2), 50-54, 1998.
J. Rabinow, “The magnetic fluid clutch”, AIEE Trans, 67, 1308-1315, 1948.
M. Ashtiani, S.H. Hashemabadi, A, Ghaffari, “A review on the magnetorheological fluid preparation and stabilization”, Journal of Magnetism and Magnetic Materials, 374, 716-730, 2015. http://dx.doi.org/10.1016/j.jmmm.2014.09.020
N.R. Rojas, G.R. Quintana, W. Saldarriga, “Caracterizcion Magneto-reológica de un fluido a base de desechos mineros, Ciencia en Desarrollo, 8 (2), 61-67, 2017.
C.P. Molina, P. Triviño, M.A. Ardila, A. Hernández, “Modelamiento de fluidos magnetorreológicos (FMR) producidos con magnetita mineral”, Revista Ingeniero Magno, 5, 120-127, 2014.
Y.B Kazakov, N.A. Morozov, S.A. Nesterov, “Development of models of the magnetorheological fluid damper”, Journal of Magnetism and Magnetic Materials, 431, 269-272, 2017. http://dx.doi.org/10.1016/j.jmmm.2016.10.006
O. Arteaga, D. Camacho, S.M. Espín, M.I. Erazo, V.H. Andaluz, M.M. Bou-Ali, J. Berasategi, A. Velasco, E. Mera, Characteristics of Magnetorheological Fluids Applied to Prosthesis for Lower Limbs with Active Damping, IT Convergence and Security 2017. Lecture Notes in Electrical Engineering, Springer, Singapore, 449, 239-247, 2018. https://doi.org/10.1007/978-981-10-6451-7_29
B.K. Kumbhar, S.R. Patil, S.M. Sawant, Synthesis and characterization of magneto.rheological (MR) fluids for MR brake aplications, Engineering Science and Technology an International Journal, 18, 432-438, 2015. http://dx.doi.org/10.1016/j.jestch.2015.03.002
A. Spaggiari, Properties and applications of magnetorheological fluids, Frattura ed Integritá Strutturales, 23, 57-61, 2013. http://dx.medra.org/10.3221/IGF-ESIS.23.06&auth=true
G. Magnac, C. Benoit, F. Cleyssen, Miniature magneto rheological fluid actuator for high force locking and damping aplication, Actuator Messe Bremen, 2010.
G. Wang, D. Zhao, Y. Ma, Z. Zhang, H. Che, J. Mu, X. Zhang, Y. Tong, X. Dong, Synthesis of calcium ferrite nanocrystal clusters for magnetorheological fluid with enhanced sedimentation stability. Powder technology, 322, 47-53, 2017, http://dx.doi.org/10.1016/j.powtec.2017.08.065.
E. Dohmen, D. Borin, A, Zubarev, Magnetic field angle dependent Hysteresis of a magnetorheological suspensión, Journal of Magnetism and Magnetics Materials, 443, 275-280, 2017, http://dx.doi.org/10.1016/j.jmmm.2017.07.076.
A. Milecki, M. Huake, Application of magnetorheological fluid in industrial shock absorvers, Mechanical Systems and Signal Processing, 28, 528-541, 2012, dx.doi.org/10.1016/j.ymssp.2011.11.008.
C.D. Mesquida, J.L. Lassig, Introducción a los fluidos magnetorreológico con aplicaciones en ingeniería, Revista Iberoamericana de Ingeniería Mecánica, 16 (1), 27-36, 2012.
M. Aslam, Y. Xing-ling, D. Zhong-chao, “Review of magnetirheological (MR) fluids and its application in vibration control”, Journal of Marine Science and Applications, 5 (3), 17-29, 2006, https://doi.org/10.1007/s11804-006-0010-2
R. C. Bell, E. D. Miller, J. O. Karl, A. N. Vavrekand, D. T. Zimmerman, “Influence of particle shape on the properties of magnetorheological fluids”, International Journal of Modern Physics B, 21 (28), 5018, 2007, https://doi.org/10.1142/S0217979207045979.
E. Esmaeilnezhad, H. Jin Choi, M. Schaffie, M. Gholizade, M. Ranjbar, S. Hyuk Kwon, “Rheological analysis of magnetite added carbonyl iron based magnetorheological fluid”, Journal of Magnetism and Magnetic Materials, 444, 161-167, 2017, http://dx.doi.org/10.1016/j.jmmm.2017.08.023.
S. V. Dyachenko. M. A. Vaseshenkova, K. D. Martinson, I. A. Cherepkova, A. I. Zherenovoi, “Synthesis and properties of magnetic fluids produced on the basis of magnetite particles”, Russian Journal of Applied Chemestry, 89 (5), 690-696, 2016, doi: 10.1134/S1070427216050025.
R. Jinaga, J. Thimmaiah, K. Shreedhar, C. Seung-Bok, “Design, fabrication and testing of a magnetorheologic fuid braking system for machine tool application”, SN Applied Science, 2019, | https://doi.org/10.1007/s42452-019-0236-7.
R. A. Proaño, (2011, Mayo) Estudio de los fluidos magnetoreológicos y su aplicación e implementación en el sistema de suspensión del vehículo buggy fórmula fau, Tesis de Ingeniería Mecánica, Escuela Politécnica del Ejercito.
R. Gu, X. Gong, W. Jiang, L. Hao, S. Xuan. Z Zhang, “Synthesis and rheological investigation of a magnetic fluid using olivary silica-coated iron particles as a precursor”, Journal of Magnetism and Magnetic Materials, 320, 2788-2791, 2008, doi:10.1016/j.jmmm.2008.06.016.
A. L. Andrade, D. M. Souza, M. C. Pereira, J. D. Fabris, R. Z. Domingues, “Synthesis and characterization of magnetic nanoparticles coated with silica through a sol-gel approach, Cerâmica, 55, 420-424, 2009.
I. Alfaro, L. Molina, P. González, J. Gaete, F. Valenzuela, J. F. Marco, C. Sáenz, C. Basulto, “Silica-coated magnetite nanoparticles functionalized with betaine and their use as an adsorbent for Mo(VI) and Re(VII) species from acidic aqueous solutions”, Journal of Industrial and Engineering Chemistry, 78, 271-283, 2019, https://doi.org/10.1016/j.jiec.2019.06.002.
E. S. D. T. de Mendonça, A. C. B. de Faria, S. C. Loureiro, F. F. Aragón, J. C. Mantilla, J. A. Coaquira, “Effects of silica coating on the magnetic properties of magnetite nanoparticles”, Surfaces and Interfaces, 14, 34-43, 2019, https://doi.org/10.1016/j.surfin.2018.11.005.
R. Rasheed, V. Meer, “Synthesis of Iron Oxide Nanoparticles Coated Sand by Biological Method and Chemical Method”, Procedia Technology” 24, 210-216, 2016, doi: 10.1016/j.protcy.2016.05.029.
V.A. Silva, P.L. Andrade, M.P. Silva, A. Bustamante D, De Los Santos, J. Aguiar, “Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides”, Journal of Magnetism and Magnetic Materials, 334, 138-143, 2013, http://dx.doi.org/10.1016/j.jmmm.2013.04.062.
H. Divandari, A. Hemmati-Sarapardeh, M. Schaffie. M. Ranjbar, Integrating synthesized citric acid-coated magnetite nanoparticles with magnetic fields for enhanced oil recovery: Experimental study and mechanistic understanding, Journal of Petroleum Science and Engineering, 174, 425-436, 2019, https://doi.org/10.1016/j.petrol.2018.11.037.
A. K. Bhalodi, J. Patel, R. Patel, K. Shah, “Magneto-Rheological dampers in automotive suspensions”, International Research Journal of Engineering and Technology, 3 (7), 1613-1618, 2016.
S. A. Khan, A. Suresh, N. “SeethaRamaiah, Principles, characteristics and applications of magneto rheological fluid damper in flow and shear mode”, Procedia Materials Science, 6, 1547-1556, 2014, doi: 10.1016/j.mspro.2014.07.136.
E. R. Wang, X. Q. Ma, S. Rakheja, C. Y. Su, “Semi-active control of vehicle vibration with MR-dampers”, Journal of Southeast University, 19 (3), 264-269, 2003, DOI: 10.1109/CDC.2003.1272956.
P. Skalski, W, “Slubowska, Review of magnetorheological dampers”, Proceedings of the Institute of Vehicles, 112 (3), 69-76, 2017.
I. Bica, Y. D. Liu, H. J. Choi, “Physical characteristics of magnetorheological suspensions and their applications”, Journal of Industrial and Engineering Chemistry, 19, 394-406, 2013, http://dx.doi.org/10.1016/j.jiec.2012.10.008
G. A. Flores, R. Sheng, J. Liu, “Medical applications of magnetorheological fluids a possible new cancer therapy”, Journal of Intelligent Material Systems and Structure, 10, 708-715, 1999.
M. Cupich, F. J. “Elizondo, Amortiguadores magnetorreológicos”, Ingenierías, 1 (2), 50-54, 1998.
P. Y. Lin, P. N. Roschke, C. H. Loh, C. P. Cheng, (2004, Agosto), Semi active controlled base isolation system with magnetorheological damper and pendulum system, 13th World Conference on Earthquake Engineering, Vancouver, Canada 2004.
A. Lämmle, “Development of a new mechanic safety coupling for human robot collaboration using magnetorheological fluids”, Procedia CIRP, 81, 908-913, 2019, 10.1016/j.procir.2019.03.226.
A. Sidpara, V. K. Jain, “Experimental investigations into forces during magnetorheological fluid based finishing process”, International Journal of Machine Tools and Manufacture, 51 (4), 358-362, 2011, https://doi.org/10.1016/j.ijmachtools.2010.12.002.
S. Kheradmand, M. Esmailian, A. Fatahy, “A novel approach of magnetorheological abrasive fluid finishing with swirling-assisted inlet flow”, Results in Physics, 6, 568-580, 2016, http://dx.doi.org/10.1016/j.rinp.2016.08.014.
M. Singh, A. K. Singh, “Performance investigation of magnetorheological finishing of rolls surface in cold rolling process”, Journal of Manufacturing Processes, 41, 315-329, 2019, https://doi.org/10.1016/j.jmapro.2019.04.007.